Menu

Blog

Archive for the ‘transportation’ category: Page 236

Jan 7, 2022

RWE and Audi to build energy storage facility with second-life EV batteries

Posted by in categories: energy, sustainability, transportation

RWE is using used lithium batteries from electric vehicles in the new storage unit. The 60 battery systems in the innovative storage unit on the site of the RWE pumped storage power plant in Herdecke, North Rhine-Westphalia, can buffer around 4.5 megawatt hours of electricity.

Jan 7, 2022

Ambarella launches 16-core CV3 AI chip for autonomous vehicles

Posted by in categories: robotics/AI, transportation

Ambarella launched its latest CV3 AI domain controller family to power autonomous vehicles.

The Santa Clara, California-based maker of AI chips made the announcement at the CES 2022 tech trade event in Las Vegas.

The chip family is another addition to the scalable, power-efficient CVflow family of system-on-chips for the automotive industry.

Jan 7, 2022

BMW debuts its new color-changing paint technology at CES: E Ink

Posted by in categories: sustainability, transportation

At the touch of a button, the car changes colors.


The surface coating of the BMW iX Flow featuring E Ink contains many millions of microcapsules, with a diameter equivalent to the thickness of a human hair. Each of these microcapsules contains negatively charged white pigments and positively charged black pigments. Depending on the chosen setting, stimulation by means of an electrical field causes either the white or the black pigments to collect at the surface of the microcapsule, giving the car body the desired shade.

Just don’t expect to see this at your local BMW dealership anytime soon: the automaker says this is just an “advanced research and design project.”

Continue reading “BMW debuts its new color-changing paint technology at CES: E Ink” »

Jan 7, 2022

Toyota’s First Solid State Battery Will Equip A Hybrid, Not An EV

Posted by in categories: sustainability, transportation

Even though solid state batteries are seen as technology that could drastically improve today’s fully-electric vehicles, it seems the first vehicles to feature one won’t actually be EVs. This is at least true in Toyota’s case since the manufacturer has now confirmed that its first solid state-equipped vehicles will be hybrids expected to debut in two or three years’ time.

The news comes from Gill Pratt, Toyota’s chief scientist and head of the Toyota Research Institute, who made the announcement during an interview for Autoline. He also mentioned that the manufacturer has made progress with its solid state project and that development is on schedule.

He did not say which hybrid Toyota will get a solid state battery, but he did go on to explain why it won’t immediately offer solid state EVs. The main reason has to do with the size of the battery pack, which for a hybrid vehicle that still has an internal combustion engine, is considerably smaller than what you see in pure EVs.

Jan 7, 2022

This Tesla Model S P85 Just Surpassed 1,500,000 Kilometers

Posted by in categories: sustainability, transportation

On January 6, 2022, a Tesla Model S P85 (the oldest performance version) reached an impressive mileage milestone of 1,500,000 km (932,256 miles).

The car is used in Germany by Hansjörg von Gemmingen — Hornberg, who is known in the EV world for setting the highest mileage records in Tesla cars.

Jan 7, 2022

Scientists reduce all-solid-state battery resistance

Posted by in categories: energy, engineering, sustainability, transportation

All-solid-state batteries are now one step closer to becoming the powerhouse of next-generation electronics, as researchers from Tokyo Tech, National Institute of Advanced Industrial Science and Technology (AIST), and Yamagata University introduce a strategy to restore their low electrical resistance. They also explore the underlying reduction mechanism, paving the way for a more fundamental understanding of the workings of all-solid-state lithium batteries.

All-solid-state lithium batteries have become the new craze in and engineering as conventional lithium-ion batteries can no longer meet the standards for advanced technologies, such as electric vehicles, which demand high energy densities, fast charging, and long cycle lives. All-solid-state batteries, which use a instead of a liquid electrolyte found in traditional batteries, not only meet these standards but are comparatively safer and more convenient as they have the possibility to charge in a short time.

However, the solid electrolyte comes with its own challenge. It turns out that the interface between the positive electrode and solid electrolyte shows a large electrical whose origin is not well understood. Furthermore, the resistance increases when the electrode surface is exposed to air, degrading the battery capacity and performance. While several attempts have been made to lower the resistance, none have managed to bring it down to 10 Ω cm2 (ohm centimeter-squared), the reported interface resistance value when not exposed to air.

Jan 7, 2022

Tesla’s cameras-only autonomous system stirs controversy

Posted by in categories: Elon Musk, robotics/AI, transportation

As it pursues the goal of fully autonomous driving, Tesla has bet entirely on cameras and artificial intelligence, shunning other commonly used tools such as laser detection.

Tesla Chief Executive Elon Musk has touted a system built around eight “surround” cameras that feed data into the auto’s “deep neural network,” according to Tesla’s website.

But as with so many other things involving Tesla, there is controversy.

Jan 7, 2022

First realistic portraits of squishy layer that’s key to battery performance

Posted by in categories: sustainability, transportation

Lithium metal batteries could store much more charge in a given space than today’s lithium-ion batteries, and the race is on to develop them for next-gen electric vehicles, electronics and other uses.

But one of the hurdles that stand in the way is a silent battle between two of the battery’s parts. The liquid between the battery electrodes, known as the electrolyte, corrodes the surface of the lithium metal anode, coating it in a thin layer of gunk called the solid-electrolyte interphase, or SEI.

Although formation of SEI is believed to be inevitable, researchers hope to stabilize and control the growth of this layer in a way that maximizes the battery’s performance. But until now they have never had a clear picture of what the SEI looks like when it’s saturated with electrolyte, as it would be in a working battery.

Jan 7, 2022

Are Aluminium Air Batteries Now Practical?

Posted by in categories: sustainability, transportation

Aluminium Air batteries have been a thing for a while — but now a UK inventor says he’s solved one of the biggest problems with them — the toxicity of the electrolyte they’ve traditionally used.

Does this make Aluminium Air batteries viable?

Continue reading “Are Aluminium Air Batteries Now Practical?” »

Jan 6, 2022

A New Theory for Systems That Defy Newton’s Third Law

Posted by in categories: energy, mathematics, physics, singularity, transportation

Many of these systems are kept out of equilibrium because individual constituents have their own power source — ATP for cells, gas for cars. But all these extra energy sources and mismatched reactions make for a complex dynamical system beyond the reach of statistical mechanics. How can we analyze phases in such ever-changing systems?

Vitelli and his colleagues see an answer in mathematical objects called exceptional points. Generally, an exceptional point in a system is a singularity, a spot where two or more characteristic properties become indistinguishable and mathematically collapse into one. At an exceptional point, the mathematical behavior of a system differs dramatically from its behavior at nearby points, and exceptional points often describe curious phenomena in systems — like lasers — in which energy is gained and lost continuously.

Now the team has found that these exceptional points also control phase transitions in nonreciprocal systems. Exceptional points aren’t new; physicists and mathematicians have studied them for decades in a variety of settings. But they’ve never been associated so generally with this type of phase transition. “That’s what no one has thought about before, using these in the context of nonequilibrium systems,” said the physicist Cynthia Reichhardt of Los Alamos National Laboratory in New Mexico. “So you can bring all the machinery that we already have about exceptional points to study these systems.”