Toggle light / dark theme

“” This type of wearable would be very helpful for people with underlying medical conditions to monitor their own health on a regular basis,” co-first author of the study Lu Yin said in a news release.

New wearable device converts body heat into electricity.
“It would also serve as a great tool for remote patient monitoring, especially during the COVID-19 pandemic when people are minimizing in-person visits to the clinic,” Yin, a nano-engineering doctoral student at the University of California, San Diego.

In addition to monitoring chronic conditions like diabetes and high blood pressure, as well as pinpointing the onset of sepsis, the patch could help predict people at risk of becoming severely ill with COVID-19.


Scientists have developed a thin, flexible skin patch, worn on the neck, that can provide all-in-one health monitoring capabilities, including the wearer’s heart rate, blood pressure and glucose levels.

We can immediately supersede the Mojo Vision approach for retinal projection, with an interim projection system using metalenses. The Mojo Lens approach is to try to put everything, including the television screen, projection method and energy source onto one contact lens. With recent breakthroughs in scaling up the size of metalenses, an approach utilizing a combination of a contact metalens and a small pair of glasses can be utilized. This is emphatically not the Google Glass approach, which did not use modern metalenses. The system would work as follows:

1)Thin TV cameras are mounted on both sides of a pair of wearable glasses.

2)The images from these cameras are projected via projection metalenses in a narrow beam to the center of the pupils.

3)A contact lens with a tiny metalens mounted in the center, directly over the pupil, projects this projected beam outwards, through the pupil, onto the full width of the curved retina.

The end result would be a 360 degree, full panorama image. This image can either be a high resolution real time vision of the wearer’s surroundings, or can be a projection of a movie, or augmented reality superimposed on the normal field of vision. It can inherently be full-color 3D. Of course such a system will be complemented with ear phones. Modern hearing aids are already so small they can barely be seen, and have batteries that last a week. A pair of ear phones will also allow full 3D sound and also will be the audible complement of augmented vision.

Cameras in cell phones using traditional lenses are already very thin, and even they could be used for an experimental system of this type, but the metalens cameras will make this drastically thinner. The projection lens system must work in combination with the lens over the pupil. This also means that when the glasses are removed, the contact lens must also be removed, or the vision will be distorted.

The end result will be a pair of glasses, not quite as thin as an ordinary pair of glasses, but still very thin and comfortable. Instead of trying to mount the power source in the contact lens, like Mojo Vision is trying to do, a small battery would be mounted in the glasses. Mojo Vision is probably going to have to do something similar for the power source: put the battery in a small pair of glasses that projects the energy onto its contact lens.

Recent advances in the field of robotics have enabled the fabrication of increasingly sophisticated robotic limbs and exoskeletons. Robotic exoskeletons are essentially wearable ‘shells’ made of different robotic parts. Exoskeletons can improve the strength, capabilities and stability of users, helping them to tackle heavy physical tasks with less effort or aiding their rehabilitation after accidents.

A thermoelectric device is an energy conversion device that uses the voltage generated by the temperature difference between both ends of a material; it is capable of converting heat energy, such as waste heat from industrial sites, into electricity that can be used in daily life. Existing thermoelectric devices are rigid because they are composed of hard metal-based electrodes and semiconductors, hindering the full absorption of heat sources from uneven surfaces. Therefore, researchers have conducted recent studies on the development of flexible thermoelectric devices capable of generating energy in close contact with heat sources such as human skins and hot water pipes.

The Korea Institute of Science and Technology (KIST) announced that a collaborative research team led by Dr. Seungjun Chung from the Soft Hybrid Materials Research Center and Professor Yongtaek Hong from the Department of Electrical and Computer Engineering at Seoul National University (SNU, President OH Se-Jung) developed flexible with high power generation performance by maximizing flexibility and transfer efficiency. The research team also presented a mass-production plan through an automated process including a printing process.

The transfer efficiency of existing substrates used for research on flexible thermoelectric devices is low due to their very . Their heat absorption efficiency is also low due to lack of flexibility, forming a heat shield layer, e.g., air, when in contact with a heat source. To address this issue, organic-material-based thermoelectric devices with high flexibility have been under development, but their application on wearables is not easy because of its significantly lower performance compared to existing inorganic-material-based rigid thermoelectric devices.

Robo maid I like my coffee light and sweet.


Robots from Japan: the new Toyota robot, giant robot, robot waiter and other technology news 2020. High Technology News 2020. Science and Technology News 2020. The newest and coolest robots from Japan and around the world.

In this issue:
0:00 Introduction.
0:29 Home robots from Toyota Research Institute.
1:29 Toyota robotic grip.
2:06 barista robot from OrionStar.
3:17 Japanese robot avatar Model-T
4:16 giant robot Gundam.
4:58 robot waiter Servi.
5:28 OSIRIS-REx space robot.
6:08 system to create realistic humanoid robots Mesmer.
6:50 new 3D printing method for artificial muscles and wearable devices.
7:35 walking robot excavator Menzi Muck M545
8:05 full warehouse automation.
8:50 MK-IV Hexapod research robot.
9:13 palm payment system Amazon One.
9:50 flying suit for paramedics.
10:31 a robot that will make you an omelette.

More interesting and useful content:
✅ Elon Musk Innovation https://www.youtube.com/playlist?list=PLcyYMmVvkTuQ-8LO6CwGWbSCpWI2jJqCQ
✅Future Technologies Reviews https://www.youtube.com/playlist?list=PLcyYMmVvkTuTgL98RdT8-z-9a2CGeoBQF
✅ Technology news.

#prorobots #technology #roboticsnews.

A research group led by Prof. Chen Tao at the Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS), developed a novel soft self-healing and adhesive human-machine interactive touch pad based on transparent nanocomposite hydrogels, in cooperation with the researchers from the Beijing Institute of Nanoenergy and Nanosystems of CAS. The study was published in Advanced Materials.

With the rapid development of information technology and the Internet of things, flexible and wearable electronic devices have attracted increasing attention. A is a requisite input device for a mobile phone, smart appliance and point-of-information terminal. Indium tin oxide (ITO) has been used as the dominant transparent conductive film for manufacturing commercial touch pads, which inevitably have obvious shortcomings, like fragility.

To improve the stretchability and biocompatibility of touch pads to allow their interaction with humans, the researchers at NIMTE developed highly transparent and stretchable polyzwitterion-clay nanocomposite hydrogels with transmittance of 98.8% and fracture strain beyond 1500%.