Menu

Blog

Page 182

Dec 11, 2024

Apple LiDAR Sensor for 3D Surveying: Tests and Results in the Cultural Heritage Domain

Posted by in categories: augmented reality, mobile phones

đŸ›ïžâ›©ïž ✍ Lorenzo Teppati LosĂš et al.


The launch of the new iPad Pro by Apple in March 2020 generated high interest and expectations for different reasons; nevertheless, one of the new features that developers and users were interested in testing was the LiDAR sensor integrated into this device (and, later on, in the iPhone 12 and 13 Pro series). The implications of using this technology are mainly related to augmented and mixed reality applications, but its deployment for surveying tasks also seems promising. In particular, the potentialities of this miniaturized and low-cost sensor embedded in a mobile device have been assessed for documentation from the cultural heritage perspective—a domain where this solution may be particularly innovative. Over the last two years, an increasing number of mobile apps using the Apple LiDAR sensor for 3D data acquisition have been released.

Dec 11, 2024

Neurosurgeons unravel the distinct nerve wiring of human memory

Posted by in category: neuroscience

The black box of the human brain is starting to open. Although animal models are instrumental in shaping our understanding of the mammalian brain, scarce human data is uncovering important specificities.

In a paper published in Cell, a team led by the Jonas group at the Institute of Science and Technology Austria (ISTA) and neurosurgeons from the Medical University of Vienna shed light on the human hippocampal CA3 region, central for memory storage.

Many of us have relished those stolen moments with a grandparent by the fireplace, our hearts racing to the intrigues of their stories from good old times, recounted with vivid imagery and a pinch of fantasy.

Dec 11, 2024

Why Do Gliomas Tend To Recur in the Brain?

Posted by in category: neuroscience

First look at neuron-tumor connections illuminates formation, spread.

Dec 11, 2024

The quantum reason behind the solidity of matter

Posted by in categories: chemistry, particle physics, quantum physics

Here on planet Earth, as well as in most locations in the Universe, everything we observe and interact with is made up of atoms. Atoms come in roughly 90 different naturally occurring species, where all atoms of the same species share similar physical and chemical properties, but differ tremendously from one species to another. Once thought to be indivisible units of matter, we now know that atoms themselves have an internal structure, with a tiny, positively charged, massive nucleus consisting of protons and neutrons surrounded by negatively charged, much less massive electrons. We’ve measured the physical sizes of these subatomic constituents exquisitely well, and one fact stands out: the size of atoms, at around 10-10 meters apiece, are much, much larger than the constituent parts that compose them.

Protons and neutrons, which compose the atom’s nucleus, are roughly a factor of 100,000 smaller in length, with a typical size of only around 10-15 meters. Electrons are even smaller, and are assumed to be point-like particles in the sense that they exhibit no measurable size at all, with experiments constraining them to be no larger than 10-19 meters across. Somehow, protons, neutrons, and electrons combine together to create atoms, which occupy much greater volumes of space than their components added together. It’s a mysterious fact that atoms, which must be mostly empty space in this regard, are still impenetrable to one another, leading to enormous collections of atoms that make up the solid objects we’re familiar with in our macroscopic world.

So how does this happen: that atoms, which are mostly empty space, create solid objects that cannot be penetrated by other solid objects, which are also made of atoms that are mostly empty space? It’s a remarkable fact of existence, but one that requires quantum physics to explain.

Dec 11, 2024

Material that “will change the world” is declared safe for humans

Posted by in categories: nanotechnology, particle physics

A nanotechnology material called graphene has captured attention worldwide, with many scientists dubbing it the latest “wonder material” with the potential to have an enormous human impact.

Graphene’s structure, made of carbon atoms arranged in a thin sheet, has properties that make it a strong contender to revolutionize many industries.

It’s often regarded as the thinnest and strongest material discovered so far, showing flexibility that few other materials can match. Its potential uses range from improving electronic devices to creating better ways to clean water.

Dec 11, 2024

Apple’s Top Apps Include Balatro and One Truly Endearing Game

Posted by in category: electronics

Apple wants you to care about F1 TV and the NYTGames apps, but you shouldn’t miss out on Thank Goodness You’re Here!

Dec 11, 2024

Death Isn’t Final: New Math Model Suggests Cells Can Be Revived

Posted by in categories: biotech/medical, mathematics

Cellular death is a fundamental concept in biological sciences. Despite its importance, its definition varies depending on the context in which it occurs and lacks a general mathematical definition.

Researchers from the University of Tokyo propose a new mathematical definition of death based on whether a potentially dead cell can return to a predefined “representative state of living,” which are the states of being that we can confidently call “alive.” The researchers’ work could be useful for biological researchers and future medical research.

While it’s not something we like to think about, death comes for us all eventually, whether you’re an animal, a plant, or even a cell. And even though we can all differentiate between what is alive and dead, it might be surprising to know that death at a cellular level lacks a widely recognized mathematical definition.

Dec 11, 2024

Google says its new quantum chip indicates that multiple universes exist

Posted by in categories: computing, cosmology, quantum physics

Google on Monday announced Willow, its latest, greatest quantum computing chip. The speed and reliability performance claims Google’s made about this chip were newsworthy in themselves, but what really caught the tech industry’s attention was an even wilder claim tucked into the blog post about the chip.

Google Quantum AI founder Hartmut Neven wrote in his blog post that this chip was so mind-boggling fast that it must have borrowed computational power from other universes.

Ergo the chip’s performance indicates that parallel universes exist and “we live in a multiverse.”

Dec 11, 2024

What should we do if AI becomes conscious? These scientists say it’s time for a plan

Posted by in category: robotics/AI

Researchers call on technology companies to test their systems for consciousness and create AI welfare policies.

Dec 11, 2024

Efficient non-viral immune cell engineering using circular single-stranded DNA-mediated genomic integration

Posted by in categories: bioengineering, biotech/medical, genetics

CAR-T and NK cells engineered using a non-viral circular single-stranded DNA system show effective anti-tumor function.

Page 182 of 12,334First179180181182183184185186Last