Samuele Ferracin1,2, Akel Hashim3,4, Jean-Loup Ville3, Ravi Naik3,4, Arnaud Carignan-Dugas1, Hammam Qassim1, Alexis Morvan3,4, David I. Santiago3,4, Irfan Siddiqi3,4,5, and Joel J. Wallman1,2
1Keysight Technologies Canada, Kanata, ON K2K 2W5, Canada 2 Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada 3 Quantum Nanoelectronics Laboratory, Dept. of Physics, University of California at Berkeley, Berkeley, CA 94,720, USA 4 Applied Math and Computational Research Division, Lawrence Berkeley National Lab, Berkeley, CA 94,720, USA 5 Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94,720, USA
“Bridge recombination can universally modify genetic material through sequence-specific insertion, excision, inversion, and more, enabling a word processor for the living genome beyond CRISPR,” said Berkeley’s Patrick Hsu, a senior author of one of the studies and Arc Institute core investigator, in a press release.
Summary: Researchers have identified how the brain’s default mode network (DMN) collaborates with other regions to produce creative thought. By using advanced brain imaging techniques, they tracked real-time brain activity during creative tasks.
This study reveals that the DMN initiates creative ideas, which are then evaluated by other brain regions. Understanding this process could lead to interventions that enhance creativity and aid mental health treatments.