Menu

Blog

Page 249

Sep 28, 2024

Gut Microbiome and Aspirin May Reverse Hormonal Issues

Posted by in categories: biotech/medical, genetics, neuroscience

Summary: Researchers found that mutations in the Sox3 gene cause hypopituitarism, a condition where the pituitary gland produces insufficient hormones, leading to growth issues and infertility. In a study on mice, they discovered that Sox3 mutations affect brain cells called NG2 glia, which are essential for hormone production.

Treating the mice with aspirin or altering their gut microbiome restored NG2 glia levels and reversed hypopituitarism. These findings suggest that both aspirin and gut bacteria could be explored as potential treatments for people with Sox3 mutations or other hormone-related disorders.

Sep 28, 2024

Blog: In this study

Posted by in category: robotics/AI

The researchers examine the effectiveness of watermarking in large language models (LLMs) and find that current methods, while promising, have serious weaknesses.


Advances in generative models have made it possible for AI-generated text, code, and images to mirror human-generated content in many applications. Watermarking, a technique that embeds information in the output of a model to verify its source, aims to mitigate the misuse of such AI-generated content. Current state-of-the-art watermarking schemes embed watermarks by slightly perturbing probabilities of the LLM’s output tokens, which can be detected via statistical testing during verification.

Unfortunately, our work shows that common design choices in LLM watermarking schemes make the resulting systems surprisingly susceptible to watermark removal or spoofing attacks—leading to fundamental trade-offs in robustness, utility, and usability. To navigate these trade-offs, we rigorously study a set of simple yet effective attacks on common watermarking systems and propose guidelines and defenses for LLM watermarking in practice.

Continue reading “Blog: In this study” »

Sep 28, 2024

World’s most powerful X-ray laser to get 3,000 times more powerful

Posted by in categories: biological, quantum physics

The Linac Coherent Light Source (LCLS), the world’s most powerful X-ray laser located at the SLAC National Accelerator Laboratory in the US, is set for a major upgrade that will increase its X-ray energy 3,000-fold, a press release shared with Interesting Engineering said.

When complete, the upgrade will let scientists explore atomic-scale processes in their search for answers in biology, materials science, quantum physics, and much more.

Sep 28, 2024

Hemp shows high promise as potential natural insecticide

Posted by in category: futurism

As part of the race to combat global insecticide resistance, new research shows that the same CBD people use to treat a variety of ailments is also extremely effective at killing mosquito larvae.

Sep 28, 2024

Genetically engineered bacteria solve computational problems

Posted by in categories: genetics, physics, robotics/AI

Researchers have developed a groundbreaking system that uses bacteria to mimic the problem-solving capabilities of artificial neural networks.


Cell-based biocomputing is a novel technique that uses cellular processes to perform computations. Such micron-scale biocomputers could overcome many of the energy, cost and technological limitations of conventional microprocessor-based computers, but the technology is still very much in its infancy. One of the key challenges is the creation of cell-based systems that can solve complex computational problems.

Now a research team from the Saha Institute of Nuclear Physics in India has used genetically modified bacteria to create a cell-based biocomputer with problem-solving capabilities. The researchers created 14 engineered bacterial cells, each of which functioned as a modular and configurable system. They demonstrated that by mixing and matching appropriate modules, the resulting multicellular system could solve nine yes/no computational decision problems and one optimization problem.

Continue reading “Genetically engineered bacteria solve computational problems” »

Sep 27, 2024

Unexpected Immune Response Linked to Cancer Remission

Posted by in category: biotech/medical

In 2012, 7-year-old Emily Whitehead became the first pediatric patient to receive pioneering chimeric antigen receptor (CAR-T) therapy to fight the recurrence of acute lymphoblastic leukemia (ALL). Twelve years later, Emily is in remission and a student at the University of Pennsylvania, where the therapy was developed. But for many others, the fight continues: more than half of ALL patients experience a relapse within one year following CAR-T therapy.

Sep 27, 2024

A translational framework to DELIVER nanomedicines to the clinic

Posted by in category: biotech/medical

Nanomedicines have created a paradigm shift in healthcare.


The authors propose a framework to be followed during preclinical investigation of nanomedicines to increase their translatability potential.

Sep 27, 2024

First-ever experimental evidence of rare kaon decay found at CERN

Posted by in categories: cosmology, particle physics

In the popular tv show big bang theory kaon decay was discovered at cern that won sheldon cooper and Amy the Nobel prize in super asymmetry and this elusive particle has been discovered. What a remarkable discovery face_with_colon_three


Researchers at CERN have observed an exceptionally rare particle decay event, potentially paving the way to uncover new physics beyond the current understanding of fundamental particles and their interactions.

This decay is extraordinarily uncommon—according to the Standard Model ℠ of particle physics, which describes particle interactions, fewer than one in every 10 billion kaons undergo this specific decay.

Continue reading “First-ever experimental evidence of rare kaon decay found at CERN” »

Sep 27, 2024

The Evolution of Intelligence: Noogenesis and the Future of Life

Posted by in categories: biological, computing, singularity, space

The study of computational biology is essential to understanding this transition. By exploring how life processes information, we gain insights into the nature of consciousness and intelligence itself. Computational models are key to revealing how systems organize, adapt, and evolve toward greater complexity and self-awareness. This progression suggests a future where intelligence is no longer bound by biological limitations but extends into the realm of artificial systems, creating a symbiotic relationship between humans and machines.

Ultimately, NOOGENESIS challenges traditional scientific paradigms by framing the universe as an informational “self-simulating” entity, where consciousness plays a central role in its evolutionary processes. The origins of life, the evolution of intelligence, and the potential for a post-Singularity future are all part of this grand narrative. By embracing this view, we can cultivate a more comprehensive understanding of the universe and our place within it—one that recognizes the fundamental role of consciousness in shaping reality and guiding evolution toward the apotheosis of Omega Singularity, the final convergence of intelligence and complexity.

Sep 27, 2024

Unlocking Mars’ Mystery: Where Did the Atmosphere Go?

Posted by in categories: energy, space

Billions of years ago, Mars is hypothesized to have been a much warmer and wetter planet featuring active volcanoes and vast liquid water oceans. However, something happened that caused the Red Planet to become the cold and dry world we see and explore today, but where did its atmosphere go? This is what a recent study published in Science Advances hopes to address as a team of researchers from the Massachusetts Institute of Technology (MIT) investigated how the large amounts of carbon that once existed in Mars’ atmosphere could now exist in the clay across the planet’s surface. This study holds the potential to help scientists better understand the formation and evolution of Mars and what that means in the search for life on the Red Planet, and beyond Earth.

For the study, the researchers calculated the amount of carbon storage within clays that potentially existed during what’s known as the Noachian Period on Mars, or between approximately 3.6 to 4 billion years ago. Their hypothesis is that when liquid water existed on the Red Planet, this water could have seeped its way into rocks, resulting in carbon dioxide being removed from the atmosphere and being converted into methane. In the end, the researchers calculated that the clays on Mars could potentially be housing up to 1.7 bar of carbon dioxide, or just over one standard atmosphere’s worth of carbon dioxide and approximately 80 percent of Mars’ ancient atmosphere.

“Based on our findings on Earth, we show that similar processes likely operated on Mars, and that copious amounts of atmospheric CO2 could have transformed to methane and been sequestered in clays,” said Dr. Oliver Jagoutz, who is a professor of geology in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS) and the sole co-author on the study. “This methane could still be present and maybe even used as an energy source on Mars in the future.”

Page 249 of 12,016First246247248249250251252253Last