Menu

Blog

Page 254

Dec 3, 2024

A New Dogma Of Molecular Biology: A Paradigm Shift

Posted by in category: biological

This is precisely the nature of our new understanding of biology, which has occurred over the past twenty years and is now sufficiently advanced to offer a new paradigm.

The previous paradigm was given in what is called the central dogma.

Dec 3, 2024

New CRISPR tool allows for remote-controlled gene-editing

Posted by in categories: biotech/medical, genetics

Engineers harness focused ultrasound to revolutionize CRISPR’s capabilities to treat countless diseases.

Dec 3, 2024

Liquid AI’s new STAR model architecture outshines Transformer efficiency

Posted by in categories: information science, robotics/AI

As described in that paper and henceforth, a transformer is a deep learning neural network architecture that processes sequential data, such as text or time-series information.

Now, MIT-birthed startup Liquid AI has introduced STAR (Synthesis of Tailored Architectures), an innovative framework designed to automate the generation and optimization of AI model architectures.

The STAR framework leverages evolutionary algorithms and a numerical encoding system to address the complex challenge of balancing quality and efficiency in deep learning models.

Dec 3, 2024

A Look at the Next Eight Billion Years in Our Solar System

Posted by in category: space

We take a look at the current best predictions for what the solar system will look like throughout the rest of the Sun’s life.

Dec 3, 2024

Venus Never Had Oceans: New Study Rules Out Past Habitability

Posted by in categories: climatology, computing, space

Did Venus have oceans in its ancient past and could they have supported life as we know it, or even as we don’t know it? This is what a recent study published in Nature Astronomy hopes to address as a team of researchers from the University of Cambridge investigated the climate history of Venus and whether it possessed liquid water oceans on its surface deep in its past. This study holds the potential to help scientists better understand past conditions on planetary bodies throughout the solar system and what this could mean for finding evidence of ancient life beyond Earth.

For the study, the researchers used computer models to estimate how fast the Venusian atmosphere is losing water, carbon dioxide, and carbonyl sulphide molecules, all of which are required to be replenished by volcanic gases so atmospheric stability can be maintained. Therefore, by studying how fast these molecules are leaving the atmosphere, scientists can estimate the amount of present and past volcanic activity on Venus, thus determining if Venus once had oceans of liquid water that might have supported life as we know it. In the end, the researchers determined that Venus is far too dry to have ever possessed bodies of liquid oceans on its surface.

“We won’t know for sure whether Venus can or did support life until we send probes at the end of this decade,” said Tereza Constantinou, who is a PhD student at Cambridge’s Institute of Astronomy and lead author of the study. “But given it likely never had oceans, it is hard to imagine Venus ever having supported Earth-like life, which requires liquid water.”

Dec 3, 2024

Simulated outbreaks demonstrate how evolutionary approaches can estimate the speed of viral spread

Posted by in category: biotech/medical

Evaluating the speed at which viruses spread and transmit across host populations is critical to mitigating disease outbreaks. A study published December 3 in PLOS Biology by Simon Dellicour at the University of Brussels (ULB), Belgium, and colleagues evaluate the performance of statistics measuring how viruses move across space and time in infected populations.

Genomic sequencing allows epidemiologists to examine the evolutionary history of pathogenic outbreaks and track the spatial movement of an outbreak. However, the sampling intensity of genomic sequences can potentially impact the accuracy of dispersal insights gained through these evolutionary approaches.

In order to assess the impact of the sampling size, researchers simulated the spread of several pathogens to evaluate three dispersal metrics estimated from the analysis of viral genomes: a lineage dispersal velocity (the speed at which lineages spread), a diffusion coefficient (how fast lineages invade space), and an isolation-by-distance signal (how genomic sequences of a population become less similar over geographic distance) metric.

Dec 3, 2024

How Small Businesses Can Leverage AI To Optimize And Scale

Posted by in categories: business, economics, robotics/AI

Froilan Mendoza is Founder & Chief Technology Officer of Fulcrum Solutions.

Small businesses are the backbone of the U.S. economy. They represent 99.9% of all businesses in the country, account for 43.5% of GDP and employ almost half of the U.S. workforce. Yet small business owners have always had to overcome obstacles to survive and succeed. Lack of capital is responsible for 38% of small business failures. Labor costs make up 70% of their expenses, and a national labor shortage of 2 million workers is exacerbating the difficulty of hiring and keeping talent.

The good news is that AI is leveling the playing field for small businesses, giving them easy-to-use tools to optimize their processes and scale their organizations without huge teams or budgets. A 2024 study from the U.S. Chamber of Commerce found that 98% of small businesses are already using an AI-enabled tool, and 91% of owners say that AI will fuel future business growth. The use of generative AI tools, such as chatbots and image creators, grew by 40% in the last year.

Dec 3, 2024

Cheerios effect inspires novel robot design

Posted by in categories: education, physics, robotics/AI

There’s a common popular science demonstration involving “soap boats,” in which liquid soap poured onto the surface of water creates a propulsive flow driven by gradients in surface tension. But it doesn’t last very long since the soapy surfactants rapidly saturate the water surface, eliminating that surface tension. Using ethanol to create similar “cocktail boats” can significantly extend the effect because the alcohol evaporates rather than saturating the water.

That simple classroom demonstration could also be used to propel tiny robotic devices across liquid surfaces to carry out various environmental or industrial tasks, according to a preprint posted to the physics arXiv. The authors also exploited the so-called “Cheerios effect” as a means of self-assembly to create clusters of tiny ethanol-powered robots.

As previously reported, those who love their Cheerios for breakfast are well acquainted with how those last few tasty little “O” s tend to clump together in the bowl: either drifting to the center or to the outer edges. The “Cheerios effect is found throughout nature, such as in grains of pollen (or, alternatively, mosquito eggs or beetles) floating on top of a pond; small coins floating in a bowl of water; or fire ants clumping together to form life-saving rafts during floods. A 2005 paper in the American Journal of Physics outlined the underlying physics, identifying the culprit as a combination of buoyancy, surface tension, and the so-called ” meniscus effect.”

Dec 3, 2024

What Time Of Day Is Best For Red Light Therapy? Glen Jeffery, PhD

Posted by in categories: biotech/medical, genetics, life extension

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

Continue reading “What Time Of Day Is Best For Red Light Therapy? Glen Jeffery, PhD” »

Dec 3, 2024

Mizzou establishes IBM Quantum Innovation Center

Posted by in categories: computing, quantum physics

As part of IBM Quantum Network, Mizzou will be able to provide researchers and other institutions cloud access to quantum computing, a new type of computing that’s swiftly advancing and full of potential.

Page 254 of 12,354First251252253254255256257258Last