Researchers have developed a revolutionary method to produce entangled photon pairs using much thinner materials, drastically reducing the size of quantum computing components.
This breakthrough enables simpler, more compact setups for quantum technologies, potentially transforming fields from climate science to pharmaceuticals.
From 2022, but an interesting look at Lobsters, and list of animals semi-immortal, tortoises, greenland sharks, jellyfish, etc…
Could the key to lobsters’ longevity slow down our biological clocks?
No one likes the thought of getting old, but it seems to be an inevitable part of life. Most species grow, develop and repair damage to their bodies until a certain point in adulthood. After this, the body becomes less capable of repairing itself and slowly starts to accumulate damage.
Recent research found that mindfulness meditation creates a unique state of relaxed alertness, marked by specific brainwave changes linked to focus and awareness, distinct from simple relaxation, and unrelated to changes in physiological arousal.
Space exploration is a dangerous business, especially when squishy living organisms, such as humans, are involved. NASA has always prided itself on how seriously it takes the safety of its astronauts, so as it gears up for the next big push in crewed space exploration, the Artemis program, it is looking for solutions to potentially catastrophic situations that might arise. One such catastrophe would be if one of the Artemis astronauts was incapacitated and couldn’t return to the lander. The only person who could potentially be able to save them would be their fellow astronaut, but carrying a fully suited human back to their base of operations would be a challenge for an astronaut similarly kitted out in their own bulky suit. So, NASA decided to address it as precisely that – a challenge – and ask for input from the general public, offering up to $20,000 for the best solution to the problem.
The challenge, “South Pole Safety: Designing the NASA Lunar Rescue System,” was announced on November 14th and accepts entries until January 23rd, 2025. It awards $45,000 to at least three winners, including $20,000 to the first-place winner. So, what does the challenge actually involve?
Astrophysicists have recently made a groundbreaking discovery that is sending shockwaves through the scientific community: an immense cluster of dark matter, equivalent to the mass of 10 million suns, is moving closer to our solar system. The mysterious nature of this phenomenon and its potential consequences for Earth have sparked concern and a flurry of research efforts to understand what this means for humanity and the universe itself.
Dark matter — one of the grand enigmas of astrophysics; yet there is no radiation-emission, absorption, reflection-of light. It does make stars and galaxies rotate a lot faster than they ever did before. The only clues scientists have about what 27% of its quantity is in the cosmos versus only 5% by ordinary matter are of itself.
Explained astrophysicist Dr. Lydia Harmon: “Dark matter is like the scaffolding of the universe, holding the galaxies together. Without it, the cosmic structure as we know it wouldn’t exist. But the idea of such a massive concentration headed toward us raises unprecedented questions.”
This article introduces the “Scaling Entropy-Area Thermodynamics” (SEAT), a unified framework claiming that all gravitational systems’ entropy scales with their surface, rather their volume, allowing gravity to be explained as an emergent phenomenon. This approach reveals how entropy, information, spacetime geometry and quantum mechanics are intrinsically linked fromnotions such as von Neumann entropy, Bekenstein bound and Ryu-Takayanagi conjecture. With the help of new entropy formulations involving surface gravity, SEAT illustrates how gravitational entropy explains gravitational systems from structured information at the boundary surface.
Thus, when one looks back in time, say by looking at light from a distant galaxy that has traveled billions of years to reach us, this is akin to “zooming out” on the hologram and making its details fuzzier in the process. This zooming out can continue until all the details of the hologram disappear altogether, which in the model of the universe suggested by Hawking and Hertog, would be the origin of time at the Big Bang.
“The crux of our hypothesis is that when you go back in time, to this earliest, violent, unimaginably complicated phase of the universe, in that phase you find a deeper level of evolution, a level in which even the laws of physics co-evolve with the universe that is taking shape,” Hertog said. “And the consequence is that if you push everything even further backward, into the Big Bang, so to speak, even the laws of physics disappear.”
Vanderbilt University Medical Center-led research reveals subtle changes in the visual pathways of individuals with chronic mild traumatic brain injury (TBI), even when standard eye examinations show no abnormalities. These findings include structural and functional deficits despite participants showing normal visual acuity during clinical examination.
Mild TBI accounts for approximately 3 million cases in the U.S. each year. Up to 85% of TBI patients, regardless of injury severity, report visual disturbances such as light sensitivity, blurred vision, or difficulty reading. Persistent symptoms including memory problems, irritability, or slowed thinking often impact quality of life. Despite these symptoms, many individuals display no abnormalities during routine clinical evaluations such as fundus examinations.
In a case-control study, “Primary Visual Pathway Changes in Individuals With Chronic Mild Traumatic Brain Injury,” published in JAMA Ophthalmology, researchers reported that 78% of participants with mild TBI exhibited visual deficits when evaluated with a comprehensive battery of tests.