Menu

Blog

Page 273

Jul 11, 2024

Overcoming Longstanding Quantum Computing Roadblock: Scientists Develop Efficient 2D Device for Quantum Cooling

Posted by in categories: computing, nanotechnology, quantum physics, space

Engineers at EPFL have developed a device capable of transforming heat into electrical voltage efficiently at temperatures even colder than those found in outer space. This breakthrough could significantly advance quantum computing technologies by addressing a major obstacle.

To perform quantum computations, quantum bits (qubits) need to be cooled to temperatures in the millikelvin range (close to-273 degrees Celsius) to reduce atomic motion and minimize noise. However, the electronics used to control these quantum circuits generate heat, which is challenging to dissipate at such low temperatures. Consequently, most current technologies must separate the quantum circuits from their electronic components, resulting in noise and inefficiencies that impede the development of larger quantum systems beyond the laboratory.

Researchers in EPFL’s Laboratory of Nanoscale Electronics and Structures (LANES), led by Andras Kis, in the School of Engineering have now fabricated a device that not only operates at extremely low temperatures, but does so with efficiency comparable to current technologies at room temperature.

Jul 11, 2024

Webb’s Infrared Eyes Expose Black Hole Mysteries in Vivid Detail

Posted by in category: cosmology

Webb’s image of RX J1131-1231 uses gravitational lensing to explore the quasar ’s black hole and dark matter, revealing details about its growth and the universe’s mass composition.

This new James Webb Space Telescope image features the gravitational lensing of the quasar known as RX J1131-1231, located roughly six billion light-years from Earth in the constellation Crater. It is considered one of the best-lensed quasars discovered to date, as the foreground galaxy smears the image of the background quasar into a bright arc and creates four images of the object.

Continue reading “Webb’s Infrared Eyes Expose Black Hole Mysteries in Vivid Detail” »

Jul 11, 2024

Lasers and 2D tech offer new hope for plastic waste management

Posted by in categories: innovation, materials

A global research team has devised a method to decompose plastics and other materials into their smallest components using a laser, enabling their future reuse.

The breakthrough involves placing these materials on two-dimensional structures called transition metal dichalcogenides and then exposing them to laser light. This technique could significantly enhance the disposal of plastics that are currently almost impossible to break down with existing technologies.

Jul 11, 2024

Why consciousness may have evolved to benefit society rather than individuals

Posted by in category: neuroscience

Why did the experience of consciousness evolve from our underlying brain physiology? Despite being a vibrant area of neuroscience, current research on consciousness is characterised by disagreement and controversy – with several rival theories in contention.

A recent scoping review of over 1,000 articles identified over 20 different theoretical accounts. Philosophers like David Chalmers argue that no single scientific theory can truly explain consciousness.

We define consciousness as embodied subjective awareness, including self awareness. In a recent article published in Interalia (which is not peer reviewed), we argue that one reason for this predicament is the powerful role played by intuition.

Jul 11, 2024

China to ramp up brain chip program after teaching monkey to control robot

Posted by in categories: Elon Musk, robotics/AI

The country’s current progress appears to be on par with Elon Musk’s Neuralink.


China has created a committee to steer the nation’s development of brain-computer interfaces (BCIs), with the hope of becoming the global leader in brain chip technology.

Continue reading “China to ramp up brain chip program after teaching monkey to control robot” »

Jul 11, 2024

3D Gaussian Ray Tracing

Posted by in category: particle physics

Gaussian ray tracing: fast tracing of particle scenes.

Nicolas Moenne-Loccoz, Ashkan Mirzaei, Or Perel, Riccardo de Lutio, Janick Martinez Esturo, Gavriel State, Sanja Fidler, Nicholas Sharp, Zan Gojcic NVDIA 2024 https://arxiv.org/abs/2407.07090 https://radiancefields.com/3d-gaussian-ray–


Today, things are taking an exciting step forward with the introduction of 3D Gaussian Ray Tracing (3DGRT).

Jul 11, 2024

Liver Cancer: How Tackling a Protein Could Boost Immunotherapy Success

Posted by in categories: biotech/medical, health

This study presents a discovery in the fight against hepatocellular carcinoma (HCC) by identifying the protein Schlafen 11 (SLFN11) as a key factor influencing the effectiveness of immune checkpoint inhibitors (ICIs). Through comprehensive analysis using humanized orthotopic HCC mouse models and in vitro co-culture systems, the research unveils how SLFN11’s deficiency in tumor cells leads to an increase in C-C motif chemokine ligand 2 (CCL2) secretion. This phenomenon promotes the infiltration of immunosuppressive macrophages and leads to immune evasion. The study also showcases the therapeutic potential of blocking CCL2/CCR2 signaling to enhance the efficacy of ICIs in patients with low SLFN11 expression. These findings pave the way for future research to explore additional therapeutic targets within the immune landscape of HCC, offering hope for more effective treatments and improved patient outcomes.

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, with advanced stages showing dismal survival rates due to limited treatment efficacy. The efforts to improve the situation have focused on immunotherapies, such as immune checkpoint inhibitors (ICIs), though their success varies significantly among individuals due to the complex interplay of tumor growth and immune evasion within the tumor microenvironment (TME). Previous studies have hinted at the role of tumor-associated macrophages (TAMs) and chemokines like CCL2 in the functional remodeling of TAMs. However, a comprehensive understanding of the mechanisms driving immune evasion and therapy resistance in HCC has been lacking. This research proposes a solution by identifying SLFN11’s role in modulating the immune landscape of HCC, specifically its influence on macrophage polarization and CCL2 signaling. The outcome offers new avenues for enhancing ICI therapy effectiveness.

Continue reading “Liver Cancer: How Tackling a Protein Could Boost Immunotherapy Success” »

Jul 11, 2024

How lasers and 2D materials could solve the world’s plastic problem

Posted by in categories: futurism, materials

A global research team led by Texas Engineers has developed a way to blast the molecules in plastics and other materials with a laser to break them down into their smallest parts for future reuse.

Jul 11, 2024

Engineers fabricate ultrastrong aluminum alloys for additive manufacturing

Posted by in categories: engineering, nanotechnology

Purdue University material engineers have created a patent-pending process to develop ultrahigh-strength aluminum alloys that are suitable for additive manufacturing because of their plastic deformability.

Haiyan Wang and Xinghang Zhang lead a team that has introduced transition metals cobalt, iron, nickel and titanium into via nanoscale, laminated, deformable intermetallics. Wang is the Basil S. Turner Professor of Engineering and Zhang is a professor in Purdue’s School of Materials Engineering. Anyu Shang, a materials engineering graduate student, completes the team.

“Our work shows that the proper introduction of heterogenous microstructures and nanoscale medium-entropy intermetallics offers an alternative solution to design ultrastrong, deformable aluminum alloys via additive manufacturing,” Zhang said. “These alloys improve upon traditional ones that are either ultrastrong or highly deformable, but not both.”

Jul 11, 2024

Photons from quantum dot emitters violate Bell inequality in new study

Posted by in categories: energy, quantum physics

A new study in Nature Physics demonstrates a novel method for generating quantum entanglement using a quantum dot, which violates the Bell inequality. This method uses ultra-low power levels and could pave the way for scalable and efficient quantum technologies.

Page 273 of 11,708First270271272273274275276277Last