Menu

Blog

Page 309

Nov 26, 2024

Anthropic launches tool to connect AI systems directly to datasets

Posted by in category: robotics/AI

The Model Context Protocol connects an AI system to multiple data sources, which Anthropic says can eliminate the need to create custom code for each one.

Nov 26, 2024

Ed Boyden: “Synthetic Neurobiology: Optically Engineering the Brain to Augment Its Function”

Posted by in categories: computing, engineering, genetics, neuroscience, singularity

Ed Boyden is a professor at the MIT Media Lab working on the most advanced brain-computer interfacing technology currently available, optogenetics. At Singularity Summit 2009.

Nov 26, 2024

Ed Boyden — The Future of Humanity | Xapiens Symposium

Posted by in categories: bioengineering, biotech/medical, life extension, robotics/AI

This is the first symposium of Xapiens at MIT — “The Future of Homo Sapiens”

The future of our species will be majorly influenced by the technical advancements and ethical paradigm shifts over the next several decades. Artificial intelligence, neural enhancement, gene editing, solutions for aging and interplanetary travel, and other emerging technologies are bringing sci-fi’s greatest ideas to reality.

Continue reading “Ed Boyden — The Future of Humanity | Xapiens Symposium” »

Nov 26, 2024

Neurology: Share your videos with friends, family, and the world

Posted by in category: futurism

Nov 26, 2024

An unconditional distribution learning advantage with shallow quantum circuits

Posted by in categories: computing, quantum physics

https://scirate.com/arxiv/2411.

Researchers present a #quantummachinelearning advantage of families of constant depth local quantum circuits over reasonably constrained log-log-depth classical circuits.

Quantum…


One of the core challenges of research in quantum computing is concerned with the question whether quantum advantages can be found for near-term quantum circuits that have implications for practical applications. Motivated by this mindset, in this work, we prove an unconditional quantum advantage in the probably approximately correct (PAC) distribution learning framework with shallow quantum circuit hypotheses. We identify a meaningful generative distribution learning problem where constant-depth quantum circuits using one and two qubit gates (QNC^0) are superior compared to constant-depth bounded fan-in classical circuits (NC^0) as a choice for hypothesis classes. We hence prove a PAC distribution learning separation for shallow quantum circuits over shallow classical circuits. We do so by building on recent results by Bene Watts and Parham on unconditional quantum advantages for sampling tasks with shallow circuits, which we technically uplift to a hyperplane learning problem, identifying non-local correlations as the origin of the quantum advantage.

Continue reading “An unconditional distribution learning advantage with shallow quantum circuits” »

Nov 26, 2024

Human-robot cooperative piano playing hits the high note at AI conference

Posted by in category: robotics/AI

A musical robot that can play the piano alongside a human, creating a harmonic accompaniment in real time, has won an award at the Center for Human-Inspired Artificial Intelligence (CHIA) Conference 2024.

Nov 26, 2024

ILO and Microsoft Launch AI-VIBES Series to Revolutionize Vocational Education in China

Posted by in categories: education, robotics/AI

Webinar marks a major step in equipping TVET teachers and trainers with AI skills to enhance teaching and training outcomes.

Nov 26, 2024

Hidden pocket in human bitter taste receptor discovered

Posted by in categories: biotech/medical, chemistry

A new study describes an exciting discovery that changes the way we understand human bitter taste receptors. The research has revealed a hidden “pocket” inside one of the body’s bitter taste receptors, called TAS2R14.

This breakthrough could help not only understand how our tongue senses bitterness but also investigate the physiological roles of bitter taste receptors that are expressed extraorally. The work is published in Nature Communications, and was led by Prof. Masha Niv from the Hebrew University of Jerusalem, Dr. Moran Shalev-Benami from the Weizmann Institute, and Dr. Dorothee Weikert from FAU Erlangen.

There are many chemically different molecules that trigger bitter taste sensations, and the body uses a family of 25 receptors to detect them. Interestingly, many drugs also activate this bitter taste system.

Nov 26, 2024

RSC Prizes

Posted by in category: chemistry

Have we got your #RSCPrizes nominations yet?

Our cover a huge range of contributions in the chemical sciences. If there’s someone you want to acknowledge, find the right prize for them and make them feel appreciated.

Nominate by 14 January ▶️ rsc.li/prizes

Continue reading “RSC Prizes” »

Nov 26, 2024

Cyanobacterial circadian clock uses an AM radio-like mechanism to control cellular processes

Posted by in categories: biological, media & arts, physics

Cyanobacteria, an ancient lineage of bacteria that perform photosynthesis, have been found to regulate their genes using the same physics principle used in AM radio transmission.

New research published in Current Biology has found that cyanobacteria use variations in the amplitude (strength) of a pulse to convey information in single cells. The finding sheds light on how biological rhythms work together to regulate cellular processes.

In AM (amplitude modulation) radio, a wave with constant strength and frequency—called a carrier wave—is generated from the oscillation of an electric current. The audio signal, which contains the information (such as music or speech) to transmit, is superimposed onto the carrier wave. This is done by varying the amplitude of the carrier wave in accordance with the frequency of the .

Page 309 of 12,367First306307308309310311312313Last