Menu

Blog

Page 323

Nov 23, 2024

Research highlights crucial role of cerebellum in social and cognitive functioning

Posted by in category: neuroscience

In a recent publication in Nature Reviews Neuroscience, Professor Frank Van Overwalle, from the Brain, Body and Cognition research group at the Vrije Universiteit Brussel (VUB), sheds light on the often-overlooked role of the cerebellum in both motor and social-cognitive processes. His research contributes to a growing shift in the field of neuroscience, which has traditionally focused on the cerebrum.

For decades, the cerebellum was primarily associated with coordination. “People with cerebellar abnormalities often experience motor issues,” Van Overwalle explains. “For example, they struggle to smoothly touch their nose with a finger. These difficulties highlight the cerebellum’s essential role in refining motor movements.”

However, Van Overwalle’s research extends beyond motor functions, exploring the cerebellum’s involvement in social and . His findings reveal that abnormalities in the cerebellum not only lead to motor deficits but are also linked to emotional and behavioral disorders. He references research on individuals with autism, demonstrating how non-invasive brain stimulation techniques like magnetic stimulation can improve social task performance.

Nov 23, 2024

Study finds cerebellar nuclei may be more important for associative learning than initially thought

Posted by in category: neuroscience

Associative learning was always thought to be regulated by the cortex of the cerebellum, often referred to as the “little brain.” However, new research from a collaboration between the Netherlands Institute for Neuroscience, Erasmus MC, and Champalimaud Center for the Unknown reveals that the nuclei of the cerebellum actually make a surprising contribution to this learning process.

If a teacup is steaming, you’ll wait a bit longer before drinking from it. And if your fingers get caught in the door, you’ll be more careful next time. These are forms of associative learning, where a positive or negative experience leads to learning behavior. We know that our is important in this form of learning. But how exactly does this work?

To investigate this issue, an international team of researchers in the Netherlands and Portugal, consisting of Robin Broersen, Catarina Albergaria, Daniela Carulli, with Megan Carey, Cathrin Canto and Chris de Zeeuw as senior authors, looked at the cerebellum of mice. The work has been published in Nature Communications.

Nov 23, 2024

‘Zombie neurons’ shed light on how the brain learns

Posted by in categories: education, neuroscience

Nestled at the back of your head, the cerebellum is a brain structure that plays a pivotal role in how we learn, adapting our actions based on past experiences. Yet the precise ways in which this learning happens are still being defined.

A study led by a team at the Champalimaud Foundation brings new clarity to this debate, with a serendipitous finding of so-called “zombie neurons.” These neurons, alive but functionally altered, have helped to advance our understanding of the cerebellum’s critical teaching signals.

The word “cerebellum” means “little brain,” despite the fact that it holds more than half the brain’s neurons. It is essential for coordinating movements and balance, helping you perform everyday tasks smoothly, like walking down a crowded street, or playing sports. It is also crucial for the that allows you to associate sensory cues with specific actions.

Nov 23, 2024

Scientists uncover cross-species neural mechanism for early detection of life motion in visual processing

Posted by in categories: biological, neuroscience

Visual systems of both humans and animals can detect life motion from the environment at the earliest stage of visual processing, research by scientists from the Chinese Academy of Sciences (CAS) uncovered.

Jointly led by scientists from the CAS Institute of Psychology and CAS Institute of Biophysics, the study also highlighted the critical role of the superior colliculus (SC) in the perception of biological motion (BM) signals, suggesting a cross-species mechanism for processing BM early in the visual stream.

Results of the study were published in Nature Communications on Nov. 7, titled “Detecting biological motion signals in human and monkey : a subcortical-cortical pathway for biological motion perception.”

Nov 23, 2024

Researchers discover a new face-detecting brain circuit

Posted by in categories: health, robotics/AI

Scientists at the National Institutes of Health (NIH) have uncovered a brain circuit in primates that rapidly detects faces. The findings help not only explain how primates sense and recognize faces, but could also have implications for understanding conditions such as autism, where face detection and recognition are often impaired from early childhood.

The newly discovered circuit first engages an evolutionarily ancient part of the brain called the superior colliculus, which can then trigger the eyes and head to turn for a better look. This better view enables different brain areas in the to engage in more complex facial recognition. The study was published in the journal Neuron.

“Quick recognition of faces is a key skill in humans and other primates,” said Richard Krauzlis, Ph.D., of NIH’s National Eye Institute (NEI) and senior author of the study.

Nov 23, 2024

Researchers discover distributed brain network underlying neural representations of biological motion attributes

Posted by in categories: biological, neuroscience

Biological motion refers to the kinesthetic information of living beings (i.e., humans and animals). The ability of biological motion perception is crucial for the organism’s survival and social interaction. Biological motion contains multidimensional attributes, including physical, biological and social attributes. How does our brain extract each attribute from multidimensional biological motion stimuli, and what is the relationship between the processing of different attributes?

A research team led by Prof. Jiang Yi from the Institute of Psychology of the Chinese Academy of Sciences used imaging (fMRI) to investigate the neural mechanisms underlying the processing of multidimensional biological motion attributes in the . They used point-light displays as test stimuli, in which only the movement trajectories of a person’s major joints are represented by a set of dots. They systematically manipulated three attributes of biological motion: walking direction, gender, and .

Using multiple regression representation similarity analysis (RSA), the researchers identified the brain networks involved in the processing of these three attributes. The that encode the walking direction attribute are mainly located in the dorsal cortical areas, those that represent the gender attribute are located in the frontal and , and the neural representations of the emotional state attribute widely involve the dorsal and ventral cortical areas.

Nov 23, 2024

Researchers identify brain regions where word meaning is retrieved

Posted by in categories: biotech/medical, engineering, neuroscience

A new study by researchers at the Medical College of Wisconsin (MCW) reveals the areas of the brain where the meanings of words are retrieved from memory and processed during language comprehension. Previous neuroimaging studies had indicated that large portions of the temporal, parietal, and frontal lobes participate in processing language meaning, but it was unknown which regions encoded information about individual word meanings.

“We found that word meaning was represented in several high-level (i.e., areas that are not closely connected to primary sensory or motor areas), including the classical ‘language areas’ known as Broca’s area and Wernicke’s area,” said Dr. Leonardo Fernandino, assistant professor of neurology and biomedical engineering at MCW. “Interestingly, however, some regions not previously considered as important for language processing were among those containing the most information about word meaning.”

Additionally, they also investigated whether the neural representations of word meaning in each of these areas contained information about phenomenological experience (i.e., related to different kinds of perceptual, emotional, and action-related experiences), as several researchers had previously proposed, or whether they contained primarily information about conceptual categories (i.e., natural kinds) or about word co-occurrence statistics, as other researchers have theorized.

Nov 23, 2024

Face detection in untrained deep neural networks

Posted by in categories: biological, mapping, robotics/AI

Researchers have explained how the regularly structured topographic maps in the visual cortex of the brain could arise spontaneously to efficiently process visual information. This research provides a new framework for understanding functional architectures in the visual cortex during early developmental stages.

A KAIST research team led by Professor Se-Bum Paik from the Department of Bio and Brain Engineering has demonstrated that the orthogonal organization of retinal mosaics in the periphery is mirrored onto the and initiates the clustered topography of higher visual areas in the brain.

This new finding provides advanced insights into the mechanisms underlying a biological strategy of brain circuitry for the efficient tiling of sensory modules. The study was published in Cell Reports on January 5.

Nov 23, 2024

A single biological factor predicts distinct cortical organizations across mammalian species

Posted by in categories: biological, engineering, mapping, neuroscience

Researchers have explained how visual cortexes develop uniquely across the brains of different mammalian species. A KAIST research team led by Professor Se-Bum Paik from the Department of Bio and Brain Engineering has identified a single biological factor, the retino-cortical mapping ratio, that predicts distinct cortical organizations across mammalian species.

This new finding has resolved a long-standing puzzle in understanding visual neuroscience regarding the origin of functional architectures in the visual cortex. The study, published in Cell Reports on March 10, demonstrates that the evolutionary variation of biological parameters may induce the development of distinct functional circuits in the visual cortex, even without -specific developmental mechanisms.

In the (V1) of mammals, neural tuning to visual stimulus orientation is organized into one of two distinct topographic patterns across species. While primates have columnar orientation maps, a salt-and-pepper type organization is observed in rodents.

Nov 23, 2024

Extending classical black hole inequalities into the quantum realm

Posted by in categories: cosmology, quantum physics

A recent study in Physical Review Letters explores quantum effects on black hole thermodynamics and geometry, focusing on extending two classical inequalities into the quantum regime.

Black holes have been thoroughly studied through a classical approach based on Einstein’s general theory of relativity. However, this approach does not account for quantum effects like Hawking radiation.

The goal of the study was for the researchers to refine classical theories by including quantum effects, thereby offering an improved understanding of black hole dynamics.

Page 323 of 12,368First320321322323324325326327Last