Menu

Blog

Page 69

Nov 11, 2024

Autonomous mobile robots for exploratory synthetic chemistry

Posted by in categories: chemistry, information science, robotics/AI

Autonomous laboratories can accelerate discoveries in chemical synthesis, but this requires automated measurements coupled with reliable decision-making.


Much progress has been made towards diversifying automated synthesis platforms4,5,19 and increasing their autonomous capabilities9,14,15,20,21,22. So far, most platforms use bespoke engineering and physically integrated analytical equipment6. The associated cost, complexity and proximal monopolization of analytical equipment means that single, fixed characterization techniques are often favoured in automated workflows, rather than drawing on the wider array of analytical techniques available in most synthetic laboratories. This forces any decision-making algorithms to operate with limited analytical information, unlike more multifaceted manual approaches. Hence, closed-loop autonomous chemical synthesis often bears little resemblance to human experimentation, either in the laboratory infrastructure required or in the decision-making steps.

We showed previously11 that free-roaming mobile robots could be integrated into existing laboratories to perform experiments by emulating the physical operations of human scientists. However, that first workflow was limited to one specific type of chemistry—photochemical hydrogen evolution—and the only measurement available was gas chromatography, which gives a simple scalar output. Subsequent studies involving mobile robots also focused on the optimization of catalyst performance12,13. These benchtop catalysis workflows11,12,13 cannot carry out more general synthetic chemistry, for example, involving organic solvents, nor can they measure and interpret more complex characterization data, such as NMR spectra. The algorithmic decision-making was limited to maximizing catalyst performance11, which is analogous to autonomous synthesis platforms that maximize yield for a reaction using NMR23 or chromatographic10,24 peak areas.

Continue reading “Autonomous mobile robots for exploratory synthetic chemistry” »

Nov 11, 2024

New Spectral Camera Uses AI to Boost Farm Yields by 20%

Posted by in categories: biotech/medical, food, health, information science, robotics/AI

A team of EU scientists is developing a new advanced camera that uses photonics to reveal what the eye cannot see. This innovative system is being developed to transform various industries, including vertical farming. It will allow farmers growing crops like salads, herbs, and microgreens to detect plant diseases early, monitor crop health with precision, and optimise harvest times — boosting yields by up to 20%.

A new European consortium funded under the Photonics Partnership is developing a new imaging platform that ensures everything from crops to factory products is of the highest quality by detecting things humans simply cannot.

Called ‘HyperImage’, the project aims to revolutionise quality assurance and operational efficiency across different sectors. This high-tech imaging system uses AI machine learning algorithms to identify objects for more precise decision-making.

Nov 11, 2024

Accumulation of advanced oxidation protein products promotes age-related decline of type H vessels in bone

Posted by in categories: biotech/medical, life extension

Abstract. Type H vessels have been proven to couple angiogenesis and osteogenesis. The decline of type H vessels contributes to bone loss in the aging process. Aging is accompanied by the accumulation of advanced oxidation protein products (AOPPs). However, whether AOPP accumulation is involved in age-related decline of type H vessels is unclear. Here, we show that the increase of AOPP levels in plasma and bone were correlated with the decline of type H vessels and loss of bone mass in old mice. Exposure of microvascular endothelial cells to AOPPs significantly inhibited cell proliferation, migration, and tube formation, increased NADPH oxidase activity and excessive reactive oxygen species generation, upregulated the expression of vascular cell adhesion molecule-1 and intercellular cell adhesion molecule-1, and eventually impaired angiogenesis, which was alleviated by redox modulator N-acetylcysteine and NADPH oxidase inhibitor apocynin. Furthermore, reduced AOPP accumulation by NAC treatment was able to alleviate significantly the decline of type H vessels, bone mass loss and deterioration of bone microstructure in old mice. Collectively, these findings suggest that AOPPs accumulation contributes to the decline of type H vessels in the aging process, and illuminate a novel potential mechanism underlying age-related bone loss.

Nov 11, 2024

The City Quantum & AI Summit Experts See Potential of Quantum and AI, Recognize Hurdles And Drawbacks

Posted by in categories: quantum physics, robotics/AI

The Quantum Insider (TQI) is the leading online resource dedicated exclusively to Quantum Computing.

Nov 11, 2024

NASA AWE Instrument on the International Space Station Spots Something in the Atmosphere 55 Miles Above Earth

Posted by in categories: climatology, space

NASA says its Atmospheric Waves Instrument (AWE) recorded a series of intense gravity waves at high altitudes during Hurricane Helene.

Nov 11, 2024

SpaceX’s Dragon Shows Off Capability To Reboost International Space Station For The First Time

Posted by in category: space travel

SpaceX Dragon demonstrated its capability to reboost the International Space Station (ISS) for the first time on Friday, with the spacecraft’s Draco thrusters adjusting the station’s orbit.

What Happened: The spacecraft adjusted the station’s orbit through a reboost of altitude by 7/100 of a mile at apogee and 7/10 of a mile at perigee, NASA said. The Dragon spacecraft fired its Draco thrusters for about 12 minutes and 30 seconds in the process.

The Roscosmos Progress spacecraft and the Northrop Grumman Cygnus spacecraft also provide reboost for the space station now.

Nov 11, 2024

AI-based authentication scheme can safeguard vehicles from cyber threats

Posted by in categories: cybercrime/malcode, internet, robotics/AI

Scientists have developed an AI-based authentication scheme to enhance vehicle security in the Internet of Vehicles (IoV).


Scientists claim to have developed an artificial intelligence tool to consolidate the privacy of vehicles and their drivers.

How to preserve the privacy of the so-called Internet of Vehicles (IoV) has emerged as a major challenge due to geographical mobility of vehicles and insufficient resources, the scientists say.

Continue reading “AI-based authentication scheme can safeguard vehicles from cyber threats” »

Nov 11, 2024

AI is universally bad at knowing when to chime in during a conversation: Researchers discover some of the root causes

Posted by in category: robotics/AI

Researchers at Tufts University have identified root causes for AI’s poor conversational timing.


When you have a conversation today, notice the natural points when the exchange leaves open the opportunity for the other person to chime in. If their timing is off, they might be taken as overly aggressive, too timid, or just plain awkward.

The back-and-forth is the social element to the exchange of information that occurs in a , and while humans do this naturally—with some exceptions—AI language systems are universally bad at it.

Continue reading “AI is universally bad at knowing when to chime in during a conversation: Researchers discover some of the root causes” »

Nov 11, 2024

Creating compact near-sensor computing chips via 3D integration of 2D materials

Posted by in categories: computing, materials

Polyethylene (PE) is one of the most widely used and versatile plastic materials globally, prized for its cost-effectiveness, lightweight properties and ease of formability. These characteristics make PE indispensable across a broad spectrum of applications, from packaging materials to structural plastics.

Nov 11, 2024

Saturday Citations: Color vision created demand for colorful animals; observing black hole light echoes; deadlines!

Posted by in categories: cosmology, evolution

A new statistical analysis by researchers at the University of Arizona suggests that evolved in animals around 500 million years ago, long before the evolution of colorful fruits and flowers, which started sprouting 200 to 350 million years ago. The researchers focused on what they term “conspicuous colors”—basically, the ones kids are likeliest to select in a 16 pack of Crayolas—red, orange, yellow, blue and purple.

Around 150 million years ago, presumably to capitalize on the well-established prevalence of color vision, species began evolving warning coloration. And 50 million years later, there was an evolutionary explosion of both warning and sexual coloration. Although the reasons behind this evolutionary burst are still unclear, the researchers identified three warning signal animal vectors behind it: ray-finned fishes, birds and lizards.

Additionally, warning coloration is much more widespread among species than sexual coloration, likely because colorful animals do not themselves need to have color vision to signal the danger they pose to other, color-sensitive species. Sexual color signals, on the other hand, are confined to vertebrate and arthropod species that have well-developed color vision.

Page 69 of 12,048First6667686970717273Last