Menu

Blog

Archive for the ‘bioengineering’ category: Page 104

Aug 26, 2020

Body fat transformed by CRISPR gene editing helps mice keep weight off

Posted by in categories: bioengineering, biotech/medical, genetics

White fat cells can be turned into energy-burning brown fat using CRISPR gene-editing technology. These engineered cells have helped mice avoid weight gain and diabetes when on a high-fat diet, and could eventually be used to treat obesity-related disorders, say the researchers behind the work.

Human adults have plenty of white fat, the cells filled with lipid that make up fatty deposits. But we have much smaller reserves of brown fat cells, which burn energy as well as storing it. People typically lose brown fat as they age or put on weight. While brown fat seems to be stimulated when we are exposed to cold temperatures, there are no established methods of building up brown fat in the body.

Aug 26, 2020

Progress towards a cure for herpes

Posted by in categories: bioengineering, biotech/medical, genetics

Researchers at the Fred Hutchinson Cancer Research Center in Seattle, USA, have used gene editing to remove latent herpes simplex virus 1 (HSV-1), also known as oral herpes.

In mice, the technique showed a 92% decrease in the latent virus – enough to keep the infection from coming back, according to the scientists. The study used two sets of “genetic scissors” to damage the virus’s DNA, fine-tune a delivery vehicle to the infected cells, and target the nerve pathways connecting the neck with the face, reaching the tissue where the virus lies dormant. The findings are published in Nature Communications.

“This is the first time that scientists have been able to go in and actually eliminate most of the herpes in a body,” said senior author Dr. Keith Jerome, Professor in the Vaccine and Infectious Disease Division at Fred Hutch. “We are targeting the root cause of the infection: the infected cells where the virus lies dormant and are the seeds that give rise to repeat infections.”

Aug 26, 2020

Kill Switch for CRISPR Could Make Gene Editing Safer

Posted by in categories: bioengineering, biotech/medical

Anti-CRISPR proteins could bolster biosecurity and improve medical treatments.

Aug 26, 2020

A ‘Kill Switch’ for Rogue Microbes

Posted by in categories: bioengineering, biotech/medical, genetics

Biologists often speak of switching genes on and off to give microbes new abilities–like producing biofuels or drugs, or gobbling up environmental toxins. For the most part, though, it’s nearly impossible to turn off a gene without deleting it (which means you can’t turn it on again). This limits biologists’ ability to control how much of a particular protein a microbe produces. It also restricts bioengineers’ ability to design new microbes.

Now researchers at Boston University, led by biomedical engineering professor James Collins, have developed a highly tunable genetic “switch” that offers a greater degree of control over microbes. It makes it possible to stop the production of a protein and restart it again. The switch, which could be used to control any gene, can also act as a “dimmer switch” to finely tune how much protein a microbe would produce over time.

The researchers made a highly effective microbe “kill switch” to demonstrate the precision of the approach. For years, researchers have been trying to develop these self-destruction mechanisms to allay concerns that genetically engineered microbes might prove impossible to eradicate once they’ve outlived their usefulness. But previous kill switches haven’t offered tight enough control to pass governmental regulatory muster because it was difficult to make it turn on in all the cells in a population at the same time.

Aug 22, 2020

Transhumanism: A Religion for Postmodern Times

Posted by in categories: bioengineering, chemistry, ethics, life extension, transhumanism

We are witnessing the birth of a new faith. It is not a theistic religion. Indeed, unlike Christianity, Judaism, and Islam, it replaces a personal relationship with a transcendent God in the context of a body of believers with a fervent and radically individualistic embrace of naked materialistic personal recreation.

Moreover, in contrast to the orthodox Christian, Judaic, and Islamic certainty that human beings are made up of both material body and immaterial soul – and that both matter – adherents of the new faith understand that we have a body, but what really counts is mind, which is ultimately reducible to mere chemical and electrical exchanges. Indeed, contrary to Christianity’s view of an existing Heaven or, say, Buddhism’s conception of the world as illusion, the new faith insists that the physical is all that has been, is, or ever will be.

Such thinking leads to nihilism. That’s where the new religion leaves past materialistic philosophies behind, by offering adherents hope. Where traditional theism promises personal salvation, the new faith offers the prospect of rescue via radical life-extension attained by technological applications – a postmodern twist, if you will, on faith’s promise of eternal life. This new religion is known as “transhumanism,” and it is all the rage among the Silicon Valley nouveau riche, university philosophers, and among bioethicists and futurists seeking the comforts and benefits of faith without the concomitant responsibilities of following dogma, asking for forgiveness, or atoning for sin – a foreign concept to transhumanists. Truly, transhumanism is a religion for our postmodern times.

Aug 19, 2020

Scientists Use Gene-Hacking to Seemingly Cure Herpes in Mice

Posted by in categories: bioengineering, biotech/medical, genetics

“I HOPE THIS STUDY CHANGES THE DIALOG AROUND HERPES RESEARCH AND OPENS UP THE IDEA THAT WE CAN START THINKING ABOUT CURE, RATHER THAN JUST CONTROL OF THE VIRUS.”


In a landmark study, researchers have successfully used gene editing to remove the oral herpes virus (HSV-1) in mice.

While previous research has mostly focused on treating and suppressing the sometimes painful symptoms of herpes, this study took a more radical approach by attempting to eliminate the virus altogether.

Continue reading “Scientists Use Gene-Hacking to Seemingly Cure Herpes in Mice” »

Aug 19, 2020

New research uses CRISPR gene editing to grow new neurons in diseased brains

Posted by in categories: bioengineering, biotech/medical, neuroscience

Scientists hope the CRISPR-based therapy could treat neurodegenerative disease.

Aug 8, 2020

Omniviolence Is Coming and the World Isn’t Ready

Posted by in categories: bioengineering, biological, cybercrime/malcode, drones, internet, law enforcement, nanotechnology, robotics/AI

The terrorist or psychopath of the future, however, will have not just the Internet or drones—called “slaughterbots” in this video from the Future of Life Institute—but also synthetic biology, nanotechnology, and advanced AI systems at their disposal. These tools make wreaking havoc across international borders trivial, which raises the question: Will emerging technologies make the state system obsolete? It’s hard to see why not. What justifies the existence of the state, English philosopher Thomas Hobbes argued, is a “social contract.” People give up certain freedoms in exchange for state-provided security, whereby the state acts as a neutral “referee” that can intervene when people get into disputes, punish people who steal and murder, and enforce contracts signed by parties with competing interests.

The trouble is that if anyone anywhere can attack anyone anywhere else, then states will become—and are becoming—unable to satisfy their primary duty as referee.

Continue reading “Omniviolence Is Coming and the World Isn’t Ready” »

Aug 3, 2020

Researchers advance fuel cell technology

Posted by in categories: bioengineering, chemistry, energy, nanotechnology, sustainability, transportation

Washington State University researchers have made a key advance in solid oxide fuel cells (SOFCs) that could make the highly energy-efficient and low-polluting technology a more viable alternative to gasoline combustion engines for powering cars.

Led by Ph.D. graduate Qusay Bkour and Professor Su Ha in the Gene and Linda Voiland School of Chemical Engineering and Bioengineering, the researchers have developed a unique and inexpensive nanoparticle catalyst that allows the to convert logistic liquid fuels such as gasoline to electricity without stalling out during the electrochemical process. The research, featured in the journal, Applied Catalysis B: Environmental, could result in highly efficient gasoline-powered cars that produce low carbon dioxide emissions that contribute to global warming.

“People are very concerned about energy, the environment, and global warming,” said Bkour. “I’m very excited because we can have a solution to the energy problem that also reduces the emissions that cause global warming.”

Aug 1, 2020

Stanford team deploys CRISPR gene editing to fight COVID-19

Posted by in categories: bioengineering, biotech/medical, genetics

The Stanford team worked with researchers at the Department of Energy’s Lawrence Berkeley National Laboratory to develop a technique called prophylactic antiviral CRISPR in human cells, or PAC-MAN. The technology disables viruses by scrambling their genetic code. The researchers developed a new way to deliver the technology into lung cells, they reported in the journal Cell.


Stanford bioengineers teamed up with researchers at the Lawrence Berkeley National Laboratory to develop a CRISPR system that neutralizes SARS-CoV-2 by scrambling the virus’s genetic code. They believe the technology could prove useful for combating several types of viruses, including influenza.