Menu

Blog

Archive for the ‘bioprinting’ category: Page 6

Dec 17, 2021

Check Out the Amazing Science Experiments Riding to Space Station Aboard the 24th SpaceX Cargo Mission

Posted by in categories: bioprinting, science, space travel

The 24thSpaceX cargo resupply services mission, targeted to launch in late December from NASA’s Kennedy Space Center in Florida, carries scientific research and technology demonstrations to the International Space Station. The experiments aboard include studies of bioprinting, crystallization of monoclonal antibodies, changes in immune function, plant gene expression changes, laundering clothes in space, processing alloys, and student citizen science projects.

Nov 2, 2021

3D bioprinting just got easier — and research could benefit

Posted by in categories: 3D printing, bioprinting, biotech/medical

New 3D printer aims to make bioprinting more accessible with uses that range from personalised drugs to human spare parts.

Sep 11, 2021

Texas researchers develop new bioink specifically for 3D bioprinting blood vessels

Posted by in categories: 3D printing, bioprinting, biotech/medical, engineering

A team of researchers from Texas A&M University’s Department of Biomedical Engineering has designed and 3D bioprinted a highly realistic model of a blood vessel.

The model is made of a newly nanoengineered, purpose-built hydrogel bioink and closely mimics the natural vascular function of a real blood vessel, as well as its disease response. The team hopes its work can pave the way for advanced cardiovascular drug development, expediting treatment approval while eliminating the need for animal and human testing altogether.

“A remarkably unique characteristic of this nanoengineered bioink is that regardless of cell density, it demonstrates a high printability and ability to protect encapsulated cells against high shear forces in the bioprinting process,” said Akhilesh Gaharwar, associate professor at the university and co-author of the study. “Remarkably, 3D bioprinted cells maintain a healthy phenotype and remain viable for nearly one month post-fabrication.”

Aug 25, 2021

Japanese scientists produce first 3D-bioprinted, marbled Wagyu beef

Posted by in categories: bioprinting, biotech/medical, food

The world of lab-grown meats is fast filling with all kinds of tasty bites, from burgers, to chicken breasts, to a series of increasingly complex cuts of steak. Expanding the scope of cultured beef are scientists from Japan’s Osaka University, who have leveraged cutting-edge bioprinting techniques to produce the first lab-grown “beef” that resembles the marbled texture of the country’s famed Wagyu cows.

From humble beginnings that resembled soggy pork back in 2,009 to the classic steaks and rib-eyes we’ve seen pop up in the last few years, lab-grown meat has come along in leaps and bounds. The most sophisticated examples use bioprinting to “print” living cells, which are nurtured to grow and differentiate into different cell types, ultimately building up into the tissues of the desired animal.

The Osaka University team used two types of stem cells harvested from Wagyu cows as their starting point, bovine satellite cells and adipose-derived stem cells. These cells were incubated and coaxed into becoming the different cell types needed to form individual fibers for muscle, fat and blood vessels. These were then arranged into a 3D stack to resemble the high intramuscular fat content of Wagyu, better known as marbling, or sashi in Japan.

Jul 23, 2021

Rapid new bioprinting method unlocks potential of human tissue transplants

Posted by in categories: 3D printing, bioprinting, biotech/medical

Scientists from the University at Buffalo have developed a rapid new 3D bioprinting method that could represent a significant step towards fully-printed human organs.

Using a novel vat-SLA-based approach, the team have been able to reduce the time it takes to create cell-laden hydrogel structures, from over 6 hours to just 19 minutes. The expedited biofabrication method also enables the production of embedded blood vessel networks, potentially making it a significant step towards the lifesaving 3D printed organs needed by those on transplant waiting lists.

“Our method allows for the rapid printing of centimeter-sized hydrogel models,” explained the study’s lead co-author, Chi Zhou. “It significantly reduces part deformation and cellular injuries caused by the prolonged exposure to the environmental stresses you commonly see in conventional 3D printing.”

Jul 23, 2021

Volumetric Bioprinting of Complex Living‐Tissue Constructs within Seconds

Posted by in categories: bioengineering, bioprinting, biotech/medical, life extension, robotics/AI

Bioprinting in seconds.


Biofabrication technologies, including stereolithography and extrusion-based printing, are revolutionizing the creation of complex engineered tissues. The current paradigm in bioprinting relies on the additive layer-by-layer deposition and assembly of repetitive building blocks, typically cell-laden hydrogel fibers or voxels, single cells, or cellular aggregates. The scalability of these additive manufacturing technologies is limited by their printing velocity, as lengthy biofabrication processes impair cell functionality. Overcoming such limitations, the volumetric bioprinting of clinically relevant sized, anatomically shaped constructs, in a time frame ranging from seconds to tens of seconds is described. An optical-tomography-inspired printing approach, based on visible light projection, is developed to generate cell-laden tissue constructs with high viability (85%) from gelatin-based photoresponsive hydrogels. Free-form architectures, difficult to reproduce with conventional printing, are obtained, including anatomically correct trabecular bone models with embedded angiogenic sprouts and meniscal grafts. The latter undergoes maturation in vitro as the bioprinted chondroprogenitor cells synthesize neo-fibrocartilage matrix. Moreover, free-floating structures are generated, as demonstrated by printing functional hydrogel-based ball-and-cage fluidic valves. Volumetric bioprinting permits the creation of geometrically complex, centimeter-scale constructs at an unprecedented printing velocity, opening new avenues for upscaling the production of hydrogel-based constructs and for their application in tissue engineering, regenerative medicine, and soft robotics.

Jun 15, 2021

Readily3D develops 3D bioprinted mini pancreas for diabetes drug testing

Posted by in categories: 3D printing, bioprinting, biotech/medical

Volumetric 3D bioprinter manufacturer and EPFL spin-out Readily3D has taken the first step towards developing a 3D printed living model of the human pancreas for testing diabetes medicines.

Readily3D’s novel technology is being deployed within the EU-funded Enlight project and is reportedly capable of 3D printing a biological tissue containing human stem cells in just 30 seconds.

Continue reading “Readily3D develops 3D bioprinted mini pancreas for diabetes drug testing” »

Jun 15, 2021

3D bioprinted heart provides new tool for surgeons

Posted by in categories: 3D printing, bioprinting, biotech/medical, engineering

Circa 2020


The FRESH technique of 3D bioprinting was invented in Feinberg’s lab to fill an unfilled demand for 3D printed soft polymers, which lack the rigidity to stand unsupported as in a normal print. FRESH 3D printing uses a needle to inject bioink into a bath of soft hydrogel, which supports the object as it prints. Once finished, a simple application of heat causes the hydrogel to melt away, leaving only the 3D bioprinted object.

Continue reading “3D bioprinted heart provides new tool for surgeons” »

May 26, 2021

Mars Research | Artificial Muscle

Posted by in categories: bioprinting, cyborgs, Elon Musk, robotics/AI, space

https://www.youtube.com/watch?v=X-qhgUb-z3U&feature=share

😃


✅ Instagram: https://www.instagram.com/pro_robots.

Continue reading “Mars Research | Artificial Muscle” »

Apr 28, 2021

Skin and bones repaired by bioprinting during surgery

Posted by in categories: bioprinting, biotech/medical, engineering

Fixing traumatic injuries to the skin and bones of the face and skull is difficult because of the many layers of different types of tissues involved, but now, researchers have repaired such defects in a rat model using bioprinting during surgery, and their work may lead to faster and better methods of healing skin and bones.

“This work is clinically significant,” said Ibrahim T. Ozbolat, Hartz Family Career Development Associate Professor of Engineering Science and Mechanics, Biomedical Engineering and Neurosurgery, Penn State. “Dealing with composite defects, fixing hard and at once, is difficult. And for the craniofacial area, the results have to be esthetically pleasing.”

Currently, fixing a hole in the skull involving both and soft tissue requires using bone from another part of the patient’s body or a cadaver. The bone must be covered by soft tissue with , also harvested from somewhere else, or the bone will die. Then surgeons need to repair the soft tissue and skin.

Page 6 of 17First345678910Last