Menu

Blog

Archive for the ‘biotech/medical’ category: Page 2

Dec 21, 2024

Open-source platform provides a virtual playground for human-AI teaming

Posted by in categories: biotech/medical, genetics, robotics/AI

Research published in The American Journal of Human Genetics has identified a previously unknown genetic link to autism spectrum disorder (ASD). The study found that variants in the DDX53 gene contribute to ASD, providing new insights into the genetic underpinnings of the condition.

ASD, which affects more males than females, encompasses a group of neurodevelopmental conditions that result in challenges related to communication, social understanding and behavior. While DDX53, located on the X chromosome, is known to play a role in brain development and function, it was not previously definitively associated with autism.

In the study, researchers from The Hospital for Sick Children (SickKids) in Canada and the Istituto Giannina Gaslini in Italy clinically tested 10 individuals with ASD from eight different families and found that variants in the DDX53 gene were maternally inherited and present in these individuals. Notably, the majority were male, highlighting the gene’s potential role in the male predominance observed in ASD.

Dec 21, 2024

Fast, rewritable computing with DNA origami registers

Posted by in categories: biotech/medical, computing

FOR IMMEDIATE RELEASE

“High-Speed Sequential DNA Computing Using a Solid-State DNA Origami Register” ACS Central Science

DNA stores the instructions for life and, along with enzymes and other molecules, computes everything from hair color to risk of developing diseases. Harnessing that prowess and immense storage capacity could lead to DNA-based computers that are faster and smaller than today’s silicon-based versions. As a step toward that goal, researchers report in ACS Central Science a fast, sequential DNA computing method that is also rewritable — just like current computers.

Dec 21, 2024

Mechanism for Cellular RNA’s Role in Antiviral Immune Response Uncovered

Posted by in category: biotech/medical

The data shows that RNA interacts with a mitochondrial protein complex to trigger immune response pathways when viral RNA is present.

Dec 21, 2024

Previously unknown genetic links provide insights into autism’s prevalence among males

Posted by in categories: biotech/medical, genetics, nanotechnology, neuroscience

Penn Engineers have modified lipid nanoparticles (LNPs)—the revolutionary technology behind the COVID-19 mRNA vaccines—to not only cross the blood-brain barrier (BBB) but also to target specific types of cells, including neurons. This breakthrough marks a significant step toward potential next-generation treatments for neurological diseases like Alzheimer’s and Parkinson’s.

In a new paper in Nano Letters, the researchers demonstrate how —short strings of —can serve as precise targeting molecules, enabling LNPs to deliver mRNA specifically to the that line the blood vessels of the brain, as well as neurons.

This represents an important advance in delivering mRNA to the cell types that would be key in treating neurodegenerative diseases; any such treatments will need to ensure that mRNA arrives at the correct location. Previous work by the same researchers proved that LNPs can cross the BBB and deliver mRNA to the brain, but did not attempt to control which cells the LNPs targeted.

Dec 20, 2024

Scientists steer the development of stem cells to regenerate and repair organs

Posted by in categories: biotech/medical, chemistry

Investigators from Cedars-Sinai and the University of California, San Francisco (UCSF) have identified a new way to deliver instructions that tell stem cells to grow into specific bodily structures, a critical step in eventually regenerating and repairing tissues and organs.

The scientists engineered cells that form structures called “synthetic organizers.” These organizers provided instructions to the stem cells through called morphogens, which stimulated and enabled the stem cells to grow into specific complex tissues and organ-like assemblies.

The research was conducted with mouse , and the findings were published in Cell.

Dec 20, 2024

Wireless antennas harness light to decode cellular communication signals

Posted by in categories: biotech/medical, neuroscience

Monitoring electrical signals in biological systems helps scientists understand how cells communicate, which can aid in the diagnosis and treatment of conditions like arrhythmia and Alzheimer’s.

But devices that record electrical signals in and other liquid environments often use wires to connect each electrode on the device to its respective amplifier. Because only so many wires can be connected to the device, this restricts the number of recording sites, limiting the information that can be collected from cells.

MIT researchers have now developed a biosensing technique that eliminates the need for wires. Instead, tiny, wireless antennas use light to detect minute electrical signals.

Dec 20, 2024

Regenerative medicine: Revolutionising osteoarthritis treatment

Posted by in categories: biotech/medical, life extension

Dr Torbjörn Ogéus is a pain specialist with clinical experience in regenerative medicine. He has been treating tendons and osteoarthritis (OA) with growth factors for 15 years. 6 years ago, Ogéus did his first stem cell treatment for OA and recently published one of the first clinical studies in the world on exosomes and OA.

Dec 20, 2024

Discovery of enzyme pathway may lead to lifesaving leishmaniasis treatments

Posted by in categories: biotech/medical, innovation

A breakthrough in understanding how a single-cell parasite makes ergosterol (its version of cholesterol) could lead to more effective drugs for human leishmaniasis, a parasitic disease that afflicts about 1 million people and kills about 30,000 people around the world every year.

The findings, reported in Nature Communications, also solve a decades-long scientific puzzle that’s prevented drugmakers from successfully using azole antifungal drugs to treat , or VL.

About 30 years ago, scientists discovered the two species of single-cell parasites that cause VL, Leishmania donovani and Leishmania infantum, made the same lipid sterol, called ergosterol, as fungi proven susceptible to azoles antifungals. These azoles antifungals target a crucial enzyme for sterol biosynthesis, called CYP51.

Dec 20, 2024

Will an mRNA vaccine target the norovirus strain behind surging cases?

Posted by in category: biotech/medical

A new type of norovirus is causing a very high number of cases in countries like England, just as a large trial of an mRNA vaccine is starting up.

By Michael Le Page

Dec 20, 2024

Calling for Reinforcements: A New Way to Recruit Immune System Helpers Could Lead to Better Flu Vaccines

Posted by in category: biotech/medical

Each year, flu causes hundreds of thousands of deaths and millions of hospitalizations worldwide. Although the best way to protect against serious illness is annual vaccination, the influenza vaccine’s effectiveness is far from perfect. In the past decade, CDC estimates of flu vaccine effectiveness have ranged from a low of 19% to a high of 48%, spurring calls for development of more effective flu vaccines. Now, NIH-funded researchers at the Stanford University School of Medicine have taken a new approach to crafting flu vaccines that resulted, both in mice and human tonsil tissue, in a more broadly protective immune response compared to currently available flu vaccines. The studies were led by Mark M. Davis, Ph.D., and the findings appeared in Science.

The trouble with current vaccines

Currently, flu vaccines are formulated annually to contain up to four strains of human influenza virus that are predicted to circulate widely in the coming season. For example, the 2024–2025 seasonal flu vaccine contains two strains of the influenza viurs A subtype and one of influenza virus B subtype. Each virus strain includes a viral protein called hemagglutinin (HA) that the virus uses to attach to and enter human cells. The immune system recognizes and responds to components of a virus or a vaccine—the antigens—by generating protective antibodies and T cells. On exposure to the flu virus, a subset of flu-specific T cells, called CD4+ helper T cells, provides signals to generate and activate antibody-producing B cells. Ideally, a swarm of HA-matched antibodies is produced following vaccination and will protect the vaccinated person from infection by flu virus strains represented in that year’s vaccine.

Page 2 of 2,79812345678Last