Menu

Blog

Archive for the ‘chemistry’ category: Page 150

Jan 28, 2023

Quantum Circuit Tackles “Diabolical” Photochemical Process

Posted by in categories: chemistry, quantum physics

A quantum device shows promise for simulating molecular dynamics in a difficult-to-model photochemical process that is relevant to vision.

Jan 27, 2023

A drug that increases dopamine can reverse the effects of inflammation on the brain in depression, Emory study shows

Posted by in categories: biotech/medical, chemistry, neuroscience

𝐀 𝐝𝐫𝐮𝐠 𝐭𝐡𝐚𝐭 𝐢𝐧𝐜𝐫𝐞𝐚𝐬𝐞𝐬 𝐝𝐨𝐩𝐚𝐦𝐢𝐧𝐞 𝐜𝐚𝐧 𝐫𝐞𝐯𝐞𝐫𝐬𝐞 𝐭𝐡𝐞 𝐞𝐟𝐟𝐞𝐜𝐭𝐬 𝐨𝐟 𝐢𝐧𝐟𝐥𝐚𝐦𝐦𝐚𝐭𝐢𝐨𝐧 𝐨𝐧 𝐭𝐡𝐞 𝐛𝐫𝐚𝐢𝐧 𝐢𝐧 𝐝𝐞𝐩𝐫𝐞𝐬𝐬𝐢𝐨𝐧, 𝐄𝐦𝐨𝐫𝐲 𝐬𝐭𝐮𝐝𝐲 𝐬𝐡𝐨𝐰𝐬

𝘼𝙣 𝙀𝙢𝙤𝙧𝙮 𝙐𝙣𝙞𝙫𝙚𝙧𝙨𝙞𝙩𝙮 𝙨𝙩𝙪𝙙𝙮 𝙥𝙪𝙗𝙡𝙞𝙨𝙝𝙚𝙙 𝙞𝙣 𝙉𝙖𝙩𝙪𝙧𝙚’𝙨 𝙈𝙤𝙡𝙚𝙘𝙪𝙡𝙖𝙧 𝙋𝙨𝙮𝙘𝙝𝙞𝙖𝙩𝙧𝙮 𝙨𝙝𝙤𝙬𝙨 𝙡𝙚𝙫𝙤𝙙𝙤𝙥𝙖, 𝙖 𝙙𝙧𝙪𝙜 𝙩𝙝𝙖𝙩 𝙞𝙣𝙘𝙧𝙚𝙖𝙨𝙚𝙨 𝙙𝙤𝙥𝙖𝙢𝙞𝙣𝙚 𝙞𝙣 𝙩𝙝𝙚 𝙗𝙧𝙖𝙞𝙣, 𝙝𝙖𝙨 𝙥𝙤𝙩𝙚𝙣𝙩𝙞𝙖𝙡 𝙩𝙤 𝙧𝙚𝙫𝙚𝙧𝙨𝙚 𝙩𝙝𝙚 𝙚𝙛𝙛𝙚𝙘𝙩𝙨 𝙤𝙛 𝙞𝙣𝙛𝙡𝙖𝙢𝙢𝙖𝙩𝙞𝙤𝙣 𝙤𝙣 𝙗𝙧𝙖𝙞𝙣 𝙧𝙚𝙬𝙖𝙧𝙙 𝙘𝙞𝙧𝙘𝙪𝙞𝙩𝙧𝙮, 𝙪𝙡𝙩𝙞𝙢𝙖𝙩𝙚𝙡𝙮 𝙞𝙢𝙥𝙧𝙤𝙫𝙞𝙣𝙜 𝙨𝙮𝙢𝙥𝙩𝙤𝙣𝙨 𝙤𝙛 𝙙𝙚𝙥𝙧𝙚𝙨𝙨𝙞𝙤𝙣.

Numerous labs across the world have shown that inflammation causes reduced motivation and anhedonia, a core symptom of depression, by affecting the brain’s reward pathways.

Continue reading “A drug that increases dopamine can reverse the effects of inflammation on the brain in depression, Emory study shows” »

Jan 27, 2023

Meteorites reveal likely origin of Earth’s volatile chemicals

Posted by in categories: alien life, chemistry

Meteorites have told Imperial researchers the likely far-flung origin of Earth’s volatile chemicals, some of which form the building blocks of life.

They found that around half the Earth’s inventory of the volatile element came from asteroids originating in the outer solar system—the part beyond the that includes the planets Jupiter, Saturn, and Uranus. This material is also expected to have supplied other important volatiles such as water.

Volatiles are elements or compounds that change from solid or into vapor at relatively low temperatures. They include the six most common elements found in living organisms, as well as water. As such, the addition of this material will have been important for the emergence of life on Earth.

Jan 27, 2023

NASA and DARPA will test nuclear thermal engines for crewed missions to Mars

Posted by in categories: chemistry, space travel

Nuclear thermal rocket engines could help get astronauts to Mars more quickly than by chemical propulsion methods. NASA and DARPA are working on nuclear thermal propulsion tech that they hope to test as soon as 2027.

Jan 27, 2023

Solar system formed from ‘poorly mixed cake batter,’ isotope research shows

Posted by in categories: chemistry, space

Earth’s potassium arrived by meteoritic delivery service finds new research led by Carnegie’s Nicole Nie and Da Wang. Their work, published in Science, shows that some primitive meteorites contain a different mix of potassium isotopes than those found in other, more-chemically processed meteorites. These results can help elucidate the processes that shaped our solar system and determined the composition of its planets.

“The found in enable stars to manufacture elements using ,” explained Nie, a former Carnegie postdoc now at Caltech. “Each stellar generation seeds the raw material from which subsequent generations are born and we can trace the history of this material across time.”

Some of the material produced in the interiors of stars can be ejected out into space, where it accumulates as a cloud of gas and dust. More than 4.5 billion years ago, one such cloud collapsed in on itself to form our sun.

Jan 27, 2023

Researchers find ways to improve the storage time of quantum information in a spin rich material

Posted by in categories: chemistry, computing, quantum physics, security

An international team of scientists have demonstrated a leap in preserving the quantum coherence of quantum dot spin qubits as part of the global push for practical quantum networks and quantum computers.

These technologies will be transformative to a broad range of industries and research efforts: from the security of information transfer, through the search for materials and chemicals with novel properties, to measurements of fundamental physical phenomena requiring precise time synchronization among the sensors.

Spin-photon interfaces are elementary building blocks for that allow converting stationary quantum information (such as the quantum state of an ion or a solid-state spin qubit) into light, namely photons, that can be distributed over large distances. A major challenge is to find an interface that is both good at storing quantum information and efficient at converting it into light.

Jan 26, 2023

Cancer cells may shrink or super-size to survive

Posted by in categories: biotech/medical, chemistry, genetics, mathematics

Cancer cells can shrink or super-size themselves to survive drug treatment or other challenges within their environment, researchers have discovered.

Scientists at The Institute of Cancer Research, London, combined biochemical profiling technologies with to reveal how lead to differences in the size of cancer cells—and how these changes could be exploited by new treatments.

The researchers believe smaller cells could be more vulnerable to DNA-damaging agents like chemotherapy combined with targeted drugs, while larger cancer cells might respond better to immunotherapy.

Jan 26, 2023

AI has designed bacteria-killing proteins from scratch — and they work

Posted by in categories: chemistry, robotics/AI

The AI, called ProGen, works in a similar way to AIs that can generate text. ProGen learned how to generate new proteins by learning the grammar of how amino acids combine to form 280 million existing proteins. Instead of the researchers choosing a topic for the AI to write about, they could specify a group of similar proteins for it to focus on. In this case, they chose a group of proteins with antimicrobial activity.

The researchers programmed checks into the AI’s process so it wouldn’t produce amino acid “gibberish”, but they also tested a sample of the AI-proposed molecules in real cells. Of the 100 molecules they physically created, 66 participated in chemical reactions similar to those of natural proteins that destroy bacteria in egg whites and saliva. This suggested that these new proteins could also kill bacteria.

The researchers selected the five proteins with the most intense reactions and added them to a sample of Escherichia coli bacteria. Two of the proteins destroyed the bacteria.

Jan 26, 2023

US lawmaker say DNA-targeted biological weapons are being developed

Posted by in categories: biotech/medical, chemistry, military

Biological and chemical weapons have the potential to pose a national security threat to the U.S. that the country is not equipped to handle, a panel of lawmakers and a military leader told an audience at the Aspen Security Forum.

Jan 25, 2023

Researchers propose combining classical and quantum optics for super-resolution imaging

Posted by in categories: biological, chemistry, quantum physics

The ability to see invisible structures in our bodies, like the inner workings of cells, or the aggregation of proteins, depends on the quality of one’s microscope. Ever since the first optical microscopes were invented in the 17th century, scientists have pushed for new ways to see more things more clearly, at smaller scales and deeper depths.

Randy Bartels, professor in the Department of Electrical Engineering at Colorado State University, is one of those scientists. He and a team of researchers at CSU and Colorado School of Mines are on a quest to invent some of the world’s most powerful light microscopes—ones that can resolve large swaths of biological material in unimaginable detail.

The name of the game is super–resolution microscopy, which is any optical imaging technique that can resolve things smaller than half the wavelength of light. The discipline was the subject of the 2014 Nobel Prize in Chemistry, and Bartels and others are in a race to keep circumventing that to illuminate biologically important structures inside the body.