Menu

Blog

Archive for the ‘chemistry’ category: Page 208

Mar 31, 2022

Scientists Achieve Record Energy Efficiency for Thin Solar Panels

Posted by in categories: chemistry, solar power, sustainability

Scientists from the University of Surrey and Imperial College London have achieved an increase in energy absorption in ultra-thin solar panels by 25%, a record for panels of this size.

The team, which collaborated with AMOLF in Amsterdam, used solar panels just one micrometer thick with a disordered honeycomb layer on top of the silicon panel. The biophilic design draws inspiration from butterfly wings and bird eyes to absorb sunlight from every possible angle, making the panels more efficient.

The research led to a 25% increase in levels of energy absorption by the panels, making these solar panels more efficient than other one-micrometer-thick panels. They published their findings in the American Chemical Society’s journal, Photonics.

Mar 31, 2022

Plasmonic catalyst smashes record for reducing vital chemical feedstock

Posted by in category: chemistry

Chalcogenide catalyses reduction of nitroaromatics used in everything from paints, plastics and pharmaceuticals.

Mar 31, 2022

Researchers’ novel tool to help develop safer pesticides

Posted by in categories: biotech/medical, chemistry, computing, economics, ethics, health

The majority of commercial chemicals that enter the market in the United States every year have insufficient health and safety data. For pesticides, the U.S. Environmental Protection Agency uses a variety of techniques to fill data gaps in order to evaluate chemical hazard, exposure and risk. Nonetheless, public concern over the potential threat that these chemicals pose has grown in recent years, along with the realization that traditional animal-testing methods are not pragmatic by means of speed, economics or ethics. Now, researchers at the George Washington University have developed a new computational approach to rapidly screen pesticides for safety, performance and how long they will endure in the environment. Moreover, and most importantly, the new approach will aid in the design of next-generation molecules to develop safer pesticides.

“In many ways, our tool mimics computational drug discovery, in which vast libraries of chemical compounds are screened for their efficacy and then tweaked to make them even more potent against specific therapeutic targets,” Jakub Kostal, an assistant professor of chemistry at GW and principal investigator on the project, said. “Similarly, we use our systems-based approach to modify to make them less toxic and more degradable, while, at the same time, making sure they retain good performance. It’s a powerful tool for both industry and that can help design new, safer analogs of existing commercial agrochemicals, and so protect human life, the environment and industry’s bottom line.”

Using their model, the team analyzed 700 pesticides from the EPA’s pesticide registry. The model considered a pesticide’s likely persistence or degradation in the environment over time, its safety, and how well it performed at killing, repelling or controlling the target problem.

Mar 29, 2022

Alien Life: What Would Constitute “Smoking Gun” Evidence?

Posted by in categories: alien life, chemistry

Multiple lines of evidence — physical, chemical, and biological — must converge for scientists to conclude that alien life has been found. This article was posted on Big Think. Check it out here: https://bigthink.com/hard-science/alien-life-smoking-gun-evidence

Mar 27, 2022

Cloud seeding might not be as favorable as drought-troubled states expect

Posted by in categories: chemistry, geoengineering

Mar 27, 2022

Italian scientists hacked pizza physics to make dough without yeast

Posted by in categories: chemistry, cybercrime/malcode, food, physics

Ernesto Di Maio is severely allergic to the yeast in leavened foods. “I have to go somewhere and hide because I will be fully covered with bumps and bubbles on the whole body,” he says. “It’s really brutal.”

Di Maio is a materials scientist at the University of Naples Federico II where he studies the formation of bubbles in polymers like polyurethane. He’s had to swear off bread and pizza, which can make outings in Italy a touch awkward. “It’s quite hard in Naples not to eat pizza,” he explains. “People would say, ‘Don’t you like pizza? Why are you having pasta? That’s strange.’”

So Di Maio put Iaccarino and another graduate student, Pietro Avallone, to work on a project to make pizza dough without yeast. The results of this scientific and culinary experiment are published in Tuesday’s edition of Physics of Fluids. Di Maio pulled in another colleague: chemical engineer Rossana Pasquino who studies the flow of materials, everything from toothpaste to ketchup to plastics. “Pizza [dough] is a funny material,” she explains, “because it flows, but it has to be also like rubber. It has to be elastic enough [when it’s cooked] to be perfect when you eat it.” — I had to post this because I love Pizza.

Continue reading “Italian scientists hacked pizza physics to make dough without yeast” »

Mar 26, 2022

Army Cutworm Reaching Treatment Thresholds in Kansas Winter Canola

Posted by in categories: chemistry, economics

With the onset of warmer temperatures, winter canola is breaking dormancy and army cutworms are now present in fields across Kansas. Significant army cutworm pressure has been observed in fields northwest of Caldwell in Sumner County.

Army cutworms feed aggressively and significant damage can occur in a short period of time. Smaller plants are most susceptible. The larvae feed on the leaf tissue, leaving the plants with a fed-on appearance (Figure 2). When minor feeding is observed, you may find leaves severed from the plant and laying on the soil surface. Where infestations are high, army cutworms will remove all leaf tissue, leaving only the base of the stem (Figure 3).

The economic threshold for chemical control is 1–2 cutworms per foot of row. Army cutworms behave nocturnally and typically spend the daylight hours below ground. When scouting, it is critical to dig in the soil around individual canola plants to find the larvae. However, it is not unusual to find army cutworm above ground when populations are high (Figure 1). The larvae are greenish-gray and often curl up into a C-shape.

Mar 25, 2022

Scientists develop a novel strategy for sustainable post-lithium-ion batteries

Posted by in categories: chemistry, sustainability, transportation

Scientists astounded by performance of sustainable batteries with far-reaching implications for e-vehicles and devices.

Researchers at Bristol have developed high-performance sodium and potassium ion batteries using sustainably sourced cellulose.

Scientists at the Bristol Composites Institute have developed a novel controllable unidirectional ice-templating strategy which can tailor the electrochemical performances of next-generation post-lithium-ion batteries with sustainability and large-scale availability. The paper is published in the journal Advanced Functional Materials.

Mar 25, 2022

AI-Designed Protein Can Awaken Silenced Genes, One

Posted by in categories: biotech/medical, chemistry, life extension, robotics/AI

Technique allows researchers to toggle on individual genes that regulate cell growth, development, and function.

By combining CRISPR technology with a protein designed with artificial intelligence, it is possible to awaken individual dormant genes by disabling the chemical “off switches” that silence them. Researchers from the University of Washington School of Medicine in Seattle describe this finding in the journal Cell Reports.

The approach will allow researchers to understand the role individual genes play in normal cell growth and development, in aging, and in such diseases as cancer, said Shiri Levy, a postdoctoral fellow in UW Institute for Stem Cell and Regenerative Medicine (ISCRM) and the lead author of the paper.

Mar 22, 2022

New ferrocenium-based anion-exchange membranes for fuel cells

Posted by in categories: chemistry, energy

Anion exchange membranes (AEMs) are semipermeable fuel cell components that can conduct anions but reject cations and gases. This enables the partition of substances that could chemically react with one another, thus allowing the cells to operate properly.

A team of researchers at Tianjin University in China have recently developed new types of AEMs that are based on a newly designed ferrocenium material. Their membranes, presented in a paper published in Nature Energy, were found to achieve highly promising results in terms of power output, durability, and ohmic resistance.

“As the oriented mixed-valence ferrocenium material developed in our study is entirely new for the AEM field, we encountered many difficulties and frustrations along the way,” Michael D. Guiver, one of the researchers who carried out the study, told TechXplore. “We spent a long research period and much effort, both experimentally and theoretically, to achieve these good outcomes. The whole process from initial conceptualization to final publication was convoluted, but fortunately successful.”