Menu

Blog

Archive for the ‘chemistry’ category: Page 214

May 9, 2022

Electron Motion Tracked in a Quantum State of Matter Using X-Ray Pulses Less Than a Millionth of a Billionth of a Second Long

Posted by in categories: biological, chemistry, quantum physics, solar power, sustainability

Less than a millionth of a billionth of a second long, attosecond X-ray pulses allow researchers to peer deep inside molecules and follow electrons as they zip around and ultimately initiate chemical reactions.

Scientists at the Department of Energy’s SLAC National Accelerator Laboratory devised a method to generate X-ray laser bursts lasting hundreds of attoseconds (or billionths of a billionth of a second) in 2018. This technique, known as X-ray laser-enhanced attosecond pulse generation (XLEAP), enables researchers to investigate how electrons racing about molecules initiate key processes in biology, chemistry, materials science, and other fields.

“Electron motion is an important process by which nature can move energy around,” says SLAC scientist James Cryan. “A charge is created in one part of a molecule and it transfers to another part of the molecule, potentially kicking off a chemical reaction. It’s an important piece of the puzzle when you start to think about photovoltaic devices for artificial photosynthesis, or charge transfer inside a molecule.”

May 8, 2022

Using Sound To Control Enzymatic Reactions

Posted by in categories: chemistry, energy, physics

Unhackneyed compartmentalization generated by audible sound allows the enzyme reactions to be controlled spatiotemporally.

Spatiotemporal regulation of multistep enzyme reactions through compartmentalization is essential in studies that mimic natural systems such as cells and organelles. Until now, scientists have used liposomes, vesicles, or polymersomes to physically separate the different enzymes in compartments, which function as ‘artificial organelles’. But now, a team of researchers led by Director KIM Kimoon at the Center for Self-assembly and Complexity within the Institute for Basic Science in Pohang, South Korea successfully demonstrated the same spatiotemporal regulation of chemical reactions by only using audible sound, which is completely different from the previous methods mentioned above.

Although sound has been widely used in physics, materials science, and other fields, it has rarely been used in chemistry. In particular, audible sound (in the range of 20–20,000 Hz) has not been used in chemical reactions so far because of its low energy. However, for the first time, the same group from the IBS had previously successfully demonstrated the spatiotemporal regulation of chemical reactions through a selective dissolution of atmospheric gases via standing waves generated by audible sound back in 2020.

May 7, 2022

Scientists engineer new tools to electronically control gene expression

Posted by in categories: biotech/medical, chemistry

Researchers, led by experts at Imperial College London, have developed a new method that allows gene expression to be precisely altered by supplying and removing electrons.

This could help control biomedical implants in the body or reactions in large ‘bioreactors’ that produce drugs and other useful compounds. Current stimuli used to initiate such reactions are often unable to penetrate materials or pose risk of toxicity—electricity holds the solution.

Gene expression is the process by which are ‘activated’ to produce new molecules and other downstream effects in cells. In organisms, it is regulated by regions of the DNA called promoters. Some promoters, called inducible promoters, can respond to different stimuli, such as light, chemicals and temperature.

May 4, 2022

Physicist designs magnetic thrust engine that could rocket us to the Red Planet

Posted by in categories: chemistry, physics, satellites, sustainability

Circa 2021


With SpaceX continuing the testing phase for Starship and enthusiasm spreading for an actual crewed flight to Mars, an interesting magnetic thrust rocket concept conceived by physicist Fatima Ebrahimi at the US Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) might make the mission much more cost effective.

Continue reading “Physicist designs magnetic thrust engine that could rocket us to the Red Planet” »

May 2, 2022

Could the blueprint for life have been generated in asteroids?

Posted by in categories: biotech/medical, chemistry, genetics

Using new analyses, scientists have just found the last two of the five informational units of DNA and RNA that had yet to be discovered in samples from meteorites. While it is unlikely that DNA could be formed in a meteorite, this discovery demonstrates that these genetic parts are available for delivery and could have contributed to the development of the instructional molecules on early Earth. The discovery, by an international team with NASA researchers, gives more evidence that chemical reactions in asteroids can make some of life’s ingredients, which could have been delivered to ancient Earth by meteorite impacts or perhaps the infall of dust.

All DNA and RNA, which contains the instructions to build and operate every living being on Earth, contains five informational components, called nucleobases. Until now, scientists scouring had only found three of the five. However, a recent analysis by a team of scientists led by Associate Professor Yasuhiro Oba of Hokkaido University, Hokkaido, Japan, identified the final two nucleobases that have eluded scientists.

Nucleobases belong to classes of organic molecules called purines and pyrimidines, which have a wide variety. However, it remains a mystery why more types haven’t been discovered in meteorites so far.

Apr 29, 2022

Towards practical and robust DNA-based data archiving using the yin–yang codec system

Posted by in categories: chemistry, computing, information science

The yin-yang codec transcoding algorithm is proposed to improve the practicality and robustness of DNA data storage.


Given these results, YYC offers the opportunity to generate DNA sequences that are highly amenable to both the ‘writing’ (synthesis) and ‘reading’ (sequencing) processes while maintaining a relatively high information density. This is crucially important for improving the practicality and robustness of DNA data storage. The DNA Fountain and YYC algorithms are the only two known coding schemes that combine transcoding rules and screening into a single process to ensure that the generated DNA sequences meet the biochemical constraints. The comparison hereinafter thus focuses on the YYC and DNA Fountain algorithms because of the similarity in their coding strategies.

The robustness of data storage in DNA is primarily affected by errors introduced during ‘writing’ and ‘reading’. There are two main types of errors: random and systematic errors. Random errors are often introduced by synthesis or sequencing errors in a few DNA molecules and can be redressed by mutual correction using an increased sequencing depth. System atic errors refer to mutations observed in all DNA molecules, including insertions, deletions and substitutions, which are introduced during synthesis and PCR amplification (referred to as common errors), or the loss of partial DNA molecules. In contrast to substitutions (single-nucleotide variations, SNVs), insertions and deletions (indels) change the length of the DNA sequence encoding the data and thus introduce challenges regarding the decoding process. In general, it is difficult to correct systematic errors, and thus they will lead to the loss of stored binary information to varying degrees.

Continue reading “Towards practical and robust DNA-based data archiving using the yin–yang codec system” »

Apr 26, 2022

Fertility crisis: Is modern life making men infertile? — BBC REEL

Posted by in categories: biotech/medical, chemistry

We all know man-made chemicals are damaging ecosystems across the planet. But could certain chemicals also be negatively affecting human fertility?

Dr Shanna Swan, an environmental and reproductive epidemiologist at Mount Sinai Hospital in New York and the author of Count Down, predicts that current trends could not continue much longer without threatening human survival.

Continue reading “Fertility crisis: Is modern life making men infertile? — BBC REEL” »

Apr 26, 2022

Dr. Stephen Johnston, PhD — Calviri — Cancer Eradication Via A Universal Preventative Cancer Vaccine

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics, health

Eradicating Cancer With A Universal Preventative Cancer Vaccine — Dr. Stephen Johnston, Ph.D., ASU Biodesign Institute / Calviri


Dr. Stephen Johnston, Ph.D. (https://biodesign.asu.edu/stephen-johnston) is the Director for the Center for Innovations in Medicine (https://biodesign.asu.edu/Research/Centers/innovations-medicine), a Professor in the School of Life Sciences, and Director of the Biological Design Graduate Program at The Biodesign Institute at Arizona State University.

Continue reading “Dr. Stephen Johnston, PhD — Calviri — Cancer Eradication Via A Universal Preventative Cancer Vaccine” »

Apr 25, 2022

Scientists demonstrate the use of a hydrogen molecule as a quantum sensor

Posted by in categories: chemistry, quantum physics

What if we could use a hydrogen molecule as a quantum sensor in a terahertz laser-equipped scanning tunneling microscope? This would allow us to measure the chemical properties of materials at unprecedented time and spatial resolutions.

This new technique has now been developed by physicists at the University of California, Irvine, according to a statement released by the institution on Friday.

“This project represents an advance in both the measurement technique and the scientific question the approach allowed us to explore,” said in the press release co-author of the new study Wilson Ho, Donald Bren Professor of physics & astronomy and chemistry.

Apr 25, 2022

Spot robot dog can smell airborne gas or chemical hazards in real-time

Posted by in categories: chemistry, robotics/AI

Teledyne FLIR Defense has announced the partnership with MFE Inspection Solutions to integrate the FLIR MUVE C360 multi-gas detector on Boston Dynamics’ Spot robot and commercial unmanned aerial systems (UAS). The integrated solutions will enable remote monitoring of chemical threats in industrial and public safety applications.

The compact multi-gas detector can detect and classify airborne gas or chemical hazards, allowing inspection personnel to perform their job more safely and efficiently with integrated remote sensing capabilities from both the air and ground.

MUVE C360 is designed to operate on Boston Dynamics‘Spot mobile robot, which can autonomously inspect dangerous, inaccessible, or remote environments. It is also compatible with common commercial UAS systems, which allow operators to fly the C360 into a scene to perform hazard assessments in real-time.