Menu

Blog

Archive for the ‘chemistry’ category: Page 246

Aug 10, 2021

Mutation-mapping tool could yield stronger COVID boosters, universal vaccines

Posted by in categories: bioengineering, biotech/medical, chemistry

Researchers at CU Boulder have developed a platform which can quickly identify common mutations on the SARS-CoV-2 virus that allow it to escape antibodies and infect cells.

Published today in Cell Reports, the research marks a major step toward successfully developing a universal vaccine for not only COVID-19, but also potentially for influenza, HIV and other deadly global viruses.

“We’ve developed a predictive tool that can tell you ahead of time which antibodies are going to be effective against circulating strains of virus,” said lead author Timothy Whitehead, associate professor of chemical and biological engineering. “But the implications for this technology are more profound: If you can predict what the variants will be in a given season, you could get vaccinated to match the sequence that will occur and short-circuit this seasonal variation.”

Continue reading “Mutation-mapping tool could yield stronger COVID boosters, universal vaccines” »

Aug 9, 2021

Sunscreen Concerns Escalate as Another Potential Carcinogen Found

Posted by in categories: biotech/medical, chemistry, health

Researchers asked U.S. regulators to pull some sunscreens from the market, including brands such as Coppertone, Banana Boat and Neutrogena, saying they’ve found evidence of a potential carcinogen.

Scientists petitioned the Food and Drug Administration to remove from sale all sunscreens containing the active ingredient octocrylene. Products made with the chemical may contain benzophenone, a suspected carcinogen that also can interfere with key hormones and reproductive organs, according to a group led by Craig Downs, executive director of the nonprofit Haereticus Environmental Laboratory that studies risks to health and the environment.

Aug 9, 2021

MIT Researchers Devised a Way To Program Memories Into Bacterial Cells

Posted by in categories: biotech/medical, chemistry, engineering

For several years, Lu’s lab has been working on ways to use DNA to store information such as memory of cellular events. In 2,014 he and Farzadfard developed a way to employ bacteria as a “genomic tape recorder,” engineering E. coli to store long-term memories of events such as a chemical exposure.


Technique for editing bacterial genomes can record interactions between cells, may offer a way to edit genes in the human microbiome.

Biological engineers at MIT

Continue reading “MIT Researchers Devised a Way To Program Memories Into Bacterial Cells” »

Aug 8, 2021

Nutritional Supplements Could Help Treat PTSD

Posted by in categories: biotech/medical, chemistry, genetics, neuroscience

Since DNMT3A increases DNA methylation, the researchers used a natural product that donates methyl groups S-adenosylmethionine (SAMe) and to activate the retinoic acid receptor they treated the animals with vitamin A. They found that combined treatment with the methyl donor SAM and retinoic acid reversed PTSD-like behaviors.


Summary: Combining two natural products that modulate the epigenome, researchers believe they have identified a feasible approach to reversing symptoms of PTSD in animal models that could be effective in humans.

Source: Bar Ilan University

Continue reading “Nutritional Supplements Could Help Treat PTSD” »

Aug 6, 2021

Using graphene foam to filter toxins from drinking water

Posted by in categories: chemistry, engineering, health, nuclear energy, sustainability

Some kinds of water pollution, such as algal blooms and plastics that foul rivers, lakes, and marine environments, lie in plain sight. But other contaminants are not so readily apparent, which makes their impact potentially more dangerous. Among these invisible substances is uranium. Leaching into water resources from mining operations, nuclear waste sites, or from natural subterranean deposits, the element can now be found flowing out of taps worldwide.

In the United States alone, “many areas are affected by uranium contamination, including the High Plains and Central Valley aquifers, which supply drinking water to 6 million people,” says Ahmed Sami Helal, a postdoc in the Department of Nuclear Science and Engineering. This contamination poses a near and present danger. “Even small concentrations are bad for human health,” says Ju Li, the Battelle Energy Alliance Professor of Nuclear Science and Engineering and professor of materials science and engineering.

Now, a team led by Li has devised a highly efficient method for removing uranium from drinking water. Applying an electric charge to graphene oxide foam, the researchers can capture uranium in solution, which precipitates out as a condensed solid crystal. The foam may be reused up to seven times without losing its electrochemical properties. “Within hours, our process can purify a large quantity of drinking water below the EPA limit for uranium,” says Li.

Aug 6, 2021

Fracking in Pennsylvania used toxic ‘forever chemicals’

Posted by in category: chemistry

The physicians group identified the use of the chemicals in at least 1200 wells in six states, not including Pennsylvania.


The Inquirer’s editorial board identified the use of PFAS in eight fracking wells. Only the Pennsylvania Department of Environmental Protection can shed light on the full scope.

Aug 6, 2021

Dr. Daniel Ives, Ph.D. — Founder and CEO — Shift Bioscience Ltd. — Driver Clocks And Longevity

Posted by in categories: biotech/medical, chemistry, genetics, life extension, robotics/AI

Driver Clocks And Longevity — Dissecting True Functional “Drivers” Of Aging Phenotypes — Dr. Daniel Ives Ph.D., Founder and CEO — Shift Bioscience Ltd.


Dr. Daniel Ives, Ph.D. is Founder and CEO of Shift Bioscience Ltd. (https://shiftbioscience.com), a biotech company making drugs for cellular rejuvenation in humans through the application of machine-learning ‘driver’ clocks to cellular reprogramming, and is the scientific founder who first discovered the gene shifting targets upon which the Shift drug discovery platform is based.

Continue reading “Dr. Daniel Ives, Ph.D. — Founder and CEO — Shift Bioscience Ltd. — Driver Clocks And Longevity” »

Aug 5, 2021

A new way to generate hydrogen fuel from seawater

Posted by in categories: chemistry, energy

Circa 2019 pour salt water in the tank one day that converts to hydrogen then back to water.


A Stanford-led team has now developed a way to harness seawater – Earth’s most abundant source – for chemical energy.

Aug 5, 2021

Marijuana-Like Brain Substance Calms Seizures but Increases After-Effects

Posted by in categories: biotech/medical, chemistry, neuroscience

But 2-AG is almost immediately converted to arachidonic acid, a building block for inflammatory compounds called prostaglandins. The researchers showed that the ensuing increase in arachidonic acid levels resulted in the buildup of a particular variety of prostaglandin that causes constriction of tiny blood vessels in the brain where the seizure has induced thatprostaglandin’s production, cutting off oxygen supply to those brain areas.


Summary: The release of 2-AG, a natural endocannabinoid that is suggested to be the brain’s equivalent to THC, dampens down seizure activity but increases post-seizure oxygen deprivation in the brain.

Source: Stanford

Continue reading “Marijuana-Like Brain Substance Calms Seizures but Increases After-Effects” »

Aug 5, 2021

New process yields more, purer RNA at a fraction of the cost

Posted by in categories: biotech/medical, chemistry

The problem with impure RNA is that it can trigger reactions, like swelling, that can be harmful, and even life-threatening. For example, impure RNA can cause inflammation in the lungs of a patient with cystic fibrosis. Conventionally manufactured RNA has to undergo a lengthy and expensive process of purification. “Rather than having to purify RNA,” says Craig Martin, the paper’s senior author and professor of chemistry at UMass, “we’ve figured out how to make clean RNA right from the start.”


Researchers at the University of Massachusetts Amherst recently unveiled their discovery of a new process for making RNA. The resulting RNA is purer, more copious and likely to be more cost-effective than any previous process could manage. This new technique removes the largest stumbling block on the path to next-generation RNA therapeutic drugs.

If DNA is the blueprint that tells the cells in our bodies what proteins to make and for what purposes, RNA is the messenger that carries DNA’s instruction to the actual -making machinery within each cell. Most of the time this process works flawlessly, but when it doesn’t, when the body can’t make a protein it needs, as in the case of a disease like cystic fibrosis, serious illness can result.

Continue reading “New process yields more, purer RNA at a fraction of the cost” »