Menu

Blog

Archive for the ‘chemistry’ category: Page 256

Jun 9, 2021

Age Resetting Genes Going to Human Studies in Two Years

Posted by in categories: biotech/medical, chemistry, genetics, neuroscience

David Sinclair is a geneticist at Harvard and author of Lifespan.

Nature – Reversal of biological clock restores vision in old mice

Continue reading “Age Resetting Genes Going to Human Studies in Two Years” »

Jun 8, 2021

Arctic rotifer lives after 24,000 years in a frozen state

Posted by in categories: biological, chemistry

Bdelloid rotifers are multicellular animals so small you need a microscope to see them. Despite their size, they’re known for being tough, capable of surviving through drying, freezing, starvation, and low oxygen. Now, researchers reporting in the journal Current Biology on June 7 have found that not only can they withstand being frozen, but they can also persist for at least 24000 years in the Siberian permafrost and survive.

“Our report is the hardest proof as of today that multicellular animals could withstand tens of thousands of years in cryptobiosis, the state of almost completely arrested metabolism,” says Stas Malavin of the Soil Cryology Laboratory at the Institute of Physicochemical and Biological Problems in Soil Science in Pushchino, Russia.

The Soil Cryology Lab specializes in isolating from the ancient permafrost in Siberia. To collect samples, they use a in some of the most remote Arctic locations.

Jun 8, 2021

Aldehyde-stabilized cryopreservation

Posted by in categories: biotech/medical, chemistry, cryonics, finance, life extension, neuroscience

Circa 2015 brain immortality through aldehyde stabilized cryopreservation.


We describe here a new cryobiological and neurobiological technique, aldehyde-stabilized cryopreservation (ASC), which demonstrates the relevance and utility of advanced cryopreservation science for the neurobiological research community. ASC is a new brain-banking technique designed to facilitate neuroanatomic research such as connectomics research, and has the unique ability to combine stable long term ice-free sample storage with excellent anatomical resolution. To demonstrate the feasibility of ASC, we perfuse-fixed rabbit and pig brains with a glutaraldehyde-based fixative, then slowly perfused increasing concentrations of ethylene glycol over several hours in a manner similar to techniques used for whole organ cryopreservation. Once 65% w/v ethylene glycol was reached, we vitrified brains at −135 °C for indefinite long-term storage. Vitrified brains were rewarmed and the cryoprotectant removed either by perfusion or gradual diffusion from brain slices. We evaluated ASC-processed brains by electron microscopy of multiple regions across the whole brain and by Focused Ion Beam Milling and Scanning Electron Microscopy (FIB-SEM) imaging of selected brain volumes. Preservation was uniformly excellent: processes were easily traceable and synapses were crisp in both species. Aldehyde-stabilized cryopreservation has many advantages over other brain-banking techniques: chemicals are delivered via perfusion, which enables easy scaling to brains of any size; vitrification ensures that the ultrastructure of the brain will not degrade even over very long storage times; and the cryoprotectant can be removed, yielding a perfusable aldehyde-preserved brain which is suitable for a wide variety of brain assays.

Jun 7, 2021

A new material made from carbon nanotubes can generate electricity

Posted by in categories: chemistry, nanotechnology, particle physics, robotics/AI

MIT engineers have discovered a new way of generating electricity using tiny carbon particles that can create a current simply by interacting with liquid surrounding them.

The liquid, an , draws electrons out of the particles, generating a current that could be used to drive or to power micro-or nanoscale robots, the researchers say.

“This mechanism is new, and this way of generating is completely new,” says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT. “This technology is intriguing because all you have to do is flow a solvent through a bed of these particles. This allows you to do electrochemistry, but with no wires.”

Jun 7, 2021

New tech cheaply produces lithium and H2, while desalinating seawater

Posted by in categories: chemistry, security, sustainability

With the rise of the lithium-based battery, demand for this soft, silvery-white metal – the lightest solid element in the periodic table – has exploded. With the race to zero carbon by 2050 gathering steam, forcing the electrification of transport, lithium will be an even more valuable asset in the next 30 years.

The supply of raw materials for batteries could even end up being a national security issue, too; China’s global leadership on high-volume EV production has put it ahead of the game, and while the majority of ground-based lithium reserves are in the “lithium triangle” of Chile, Bolivia and Argentina, China controls more than half’s the world’s supply simply through investments and ownership. It has shown in the past that it’s not afraid to wield commodity supplies as a weapon.

But as with other metals like uranium, land-based lithium reserves pale in comparison to what’s out there in the sea. According to researchers at Saudi Arabia’s King Abdullah University of Science and Technology (KAUST), there’s about 5000 times as much lithium in the oceans as there is in land deposits, and a newly developed technology could start extracting it cheaply enough to make the big time – while producing hydrogen gas, chorine gas and desalinated water as a bonus.

Jun 7, 2021

Smashing gold with finesse: Shockless compression experiments establish new pressure scales

Posted by in categories: chemistry, computing, particle physics, quantum physics

To test the Standard Model of particle physics, scientists often collide particles using gigantic underground rings. In a similar fashion, high-pressure physicists compress materials to ever greater pressures to further test the quantum theory of condensed matter and challenge predictions made using the most powerful computers.

Pressures exceeding 1 million atmospheres are capable of dramatically deforming atomic electronic clouds and alter how atoms are packed together. This leads to new chemical bonding and has revealed extraordinary behaviors such as helium rain, the transformation of sodium into a transparent metal, the emergence of superionic water ice and the transformation of hydrogen into a metallic fluid.

With new techniques constantly advancing the frontier of high– physics, terapascal (TPa) pressures that were once inaccessible can now be achieved in the laboratory using static or dynamic compression (1 TPa is equivalent to approximately 10 million atmospheres).

Jun 5, 2021

A catalyst that destroys perchlorate in water could clean Martian soil

Posted by in categories: biotech/medical, chemistry, robotics/AI, space travel

## JOURNAL OF THE AMERICAN CHEMICAL SOCIETY • JUN 4, 2021.

# *A lovely single step bio-inspired process with some interesting complex benefits particularly for humans on Mars.*

*by holly ober, university of california — riverside*

Continue reading “A catalyst that destroys perchlorate in water could clean Martian soil” »

Jun 4, 2021

Sonothermogenetics for noninvasive and cell-type specific deep brain neuromodulation

Posted by in categories: biotech/medical, chemistry, genetics, neuroscience

Critical advances in the investigation of brain functions and treatment of brain disorders are hindered by our inability to selectively target neurons in a noninvasive manner in the deep brain.

This study aimed to develop sonothermogenetics for noninvasive, deep-penetrating, and cell-type-specific neuromodulation by combining a thermosensitive ion channel TRPV1 with focused ultrasound (FUS)-induced brief, non-noxious thermal effect.

The sensitivity of TRPV1 to FUS sonication was evaluated in vitro. It was followed by in vivo assessment of sonothermogenetics in the activation of genetically defined neurons in the mouse brain by two-photon calcium imaging. Behavioral response evoked by sonothermogenetic stimulation at a deep brain target was recorded in freely moving mice. Immunohistochemistry staining of ex vivo brain slices was performed to evaluate the safety of FUS sonication.

Jun 4, 2021

Electrons Waiting Their Turn: New Model Explains 3D Quantum Material

Posted by in categories: chemistry, quantum physics

Scientists from the Cluster of Excellence ct.qmat – Complexity and Topology in Quantum Matter have developed a new understanding of how electrons behave in strong magnetic fields. Their results explain measurements of electric currents in three-dimensional materials that signal a quantum Hall effect – a phenomenon thus far only associated with two-dimensional metals. This new 3D effect can be the foundation for topological quantum phenomena, which are believed to be particularly robust and therefore promising candidates for extremely powerful quantum technologies. These results have just been published in the scientific journal Nature Communications.

Dr. Tobias Meng and Dr. Johannes Gooth are early career researchers in the Würzburg-Dresdner Cluster of Excellence ct.qmat that researches topological quantum materials since 2019. They could hardly believe the findings of a recent publication in Nature claiming that electrons in the topological metal zirconium pentatelluride (ZrTe5) move only in two-dimensional planes, despite the fact that the material is three-dimensional. Meng and Gooth therefore started their own research and experiments on the material ZrTe5. Meng from the Technische Universität Dresden (TUD) developed the theoretical model, Gooth from the Max Planck Institute for Chemical Physics of Solids designed the experiments. Seven measurements with different techniques always lead to the same conclusion.

Jun 2, 2021

BPA Exposure Below Regulatory Levels Can Impact Brain Development

Posted by in categories: chemistry, food, neuroscience

Summary: A new mouse study reveals that exposure to BPA at levels 25 times lower than deemed safe has an impact on brain development.

Source: University of Calgary.

Humans are exposed to a bath of chemicals every day. They are in the beds where we sleep, the cars that we drive and the kitchens we use to feed our families. With thousands of chemicals floating around in our environment, exposure to any number is practically unavoidable. Through the work of researchers like Dr. Deborah Kurrasch, PhD, the implications of many of these chemicals are being thoroughly explored.