Menu

Blog

Archive for the ‘chemistry’ category: Page 277

Oct 19, 2020

New insight brings sustainable hydrogen one step closer

Posted by in categories: chemistry, particle physics, sustainability, transportation

Leiden chemists Marc Koper and Ian McCrum have discovered that the degree to which a metal binds to the oxygen atom of water is decisive for how well the chemical conversion of water to molecular hydrogen takes place. This insight helps to develop better catalysts for the production of sustainable hydrogen, an important raw material for the chemical industry and the fuel needed for environmentally friendly hydrogen cars. Publication in Nature Energy.

For years there has been a heated debate in the literature: how to speed up the electrochemical production of on platinum electrodes in an alkaline environment? Chemist Ian McCrum watched from the sidelines and concluded that part of the debate was caused by the fact that the debaters were looking at slightly different electrodes, making the results incomparable. Time to change that, McCrum thought, who was a LEaDing Fellow postdoc in the group of Professor Marc Koper at the time.

Oct 19, 2020

Early Childhood Trauma Affects Metabolism in the Next Generation

Posted by in categories: biotech/medical, chemistry, genetics

Article. The research/article indicates that childhood trauma can not only impact the current generation, but future generations. Biochemical signals are sent to the germ cells, modifying the expression of some genes and/or the DNA structure.


Traumatic experiences can have a lasting impact, so children that suffer through them can feel their effects for a lifetime. Work has also shown that trauma can change the way genes are expressed, through epigenetics. Epigenetic changes do not alter the sequence of genes but they alter the biochemistry of DNA, and these changes are sometimes passed down to future generations through germ cells. Scientists have been working to learn more about how traumatic events get embedded in the genetic code of germ cells.

Continue reading “Early Childhood Trauma Affects Metabolism in the Next Generation” »

Oct 18, 2020

Autopsies Show Microplastics in Major Human Organs

Posted by in categories: bioengineering, biotech/medical, chemistry, health

It looks like micro-plastics are now found inside human bodies.


Researchers found evidence of plastic contamination in tissue samples taken from the lungs, liver, spleen and kidneys of donated human cadavers.

“We have detected these chemicals of plastics in every single organ that we have investigated,” said senior researcher Rolf Halden, director of the Arizona State University (ASU) Biodesign Center for Environmental Health Engineering.

Continue reading “Autopsies Show Microplastics in Major Human Organs” »

Oct 17, 2020

[Burning Issue] CRISPR Technology and Associated Concerns

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics

We ask students to login via google as we share a lot of our content over google drive. To access the same, a google account is a must.


The CRISPR-Cas9 system has revolutionized genetic manipulations and made gene editing simpler, faster and easily accessible to most laboratories.

To its recognition, this year, the French-American duo Emmanuelle Charpentier and Jennifer Doudna have been awarded the prestigious Nobel Prize for chemistry for CRISPR.

Oct 16, 2020

Zeptoseconds: New world record in short time measurement

Posted by in categories: chemistry, physics

In 1999, the Egyptian chemist Ahmed Zewail received the Nobel Prize for measuring the speed at which molecules change their shape. He founded femtochemistry using ultrashort laser flashes: the formation and breakup of chemical bonds occurs in the realm of femtoseconds.

Now, atomic physicists at Goethe University in Professor Reinhard Dörner’s team have for the first time studied a process that is shorter than femtoseconds by magnitudes. They measured how long it takes for a photon to cross a hydrogen molecule: about 247 zeptoseconds for the average bond length of the molecule. This is the shortest timespan that has been successfully measured to date.

The scientists carried out the time measurement on a hydrogen molecule (H2) which they irradiated with X-rays from the X-ray laser source PETRA III at the Hamburg accelerator facility DESY. The researchers set the energy of the X-rays so that one photon was sufficient to eject both out of the hydrogen molecule.

Oct 16, 2020

More than 200 million Americans could have toxic PFAS in their drinking water

Posted by in categories: chemistry, sustainability

A peer-reviewed study by scientists at the Environmental Working Group estimates that more than 200 million Americans could have the toxic fluorinated chemicals known as PFAS in their drinking water at a concentration of 1 part per trillion, or ppt, or higher. Independent scientific studies have recommended a safe level for PFAS in drinking water of 1 ppt, a standard that is endorsed by EWG.

The study, published today in the journal Environmental Science & Technology Letters, analyzed publicly accessible drinking testing results from the Environmental Protection Agency and U.S. Geological Survey, as well as state testing by Colorado, Kentucky, Michigan, New Hampshire, New Jersey, North Carolina and Rhode Island.

“We know drinking water is a major source of exposure of these toxic chemicals,” said Olga Naidenko, Ph.D., vice president for science investigations at EWG and a co-author of the new study. “This new paper shows that PFAS pollution is affecting even more Americans than we previously estimated. PFAS are likely detectable in all major water supplies in the U.S., almost certainly in all that use surface water.”

Oct 16, 2020

Enzymatic DNA synthesis enters new phase

Posted by in categories: biotech/medical, chemistry

Several startups are now pursuing the potential of enzymatic synthesis as a faster and more efficient route for synthesizing longer DNA sequences than is possible with traditional chemical means.

Oct 15, 2020

Mass. university studying nanotechnology to help curb COVID-19 spread

Posted by in categories: biotech/medical, chemistry, engineering, nanotechnology

A group of scientists at Northeastern University are making progress using nanotechnology to prevent, diagnose and fight the coronavirus.

Thomas Webster, professor of chemical engineering at Northeastern University, has been working with nanotechnology for decades. Now, he and his team are finding new applications with the coronavirus.

Oct 14, 2020

Exploring chemical space: Can AI take us where no human has gone before?

Posted by in categories: biotech/medical, chemistry, robotics/AI, solar power

Chemical space contains every possible chemical compound. It includes every drug and material we know and every one we’ll find in the future. It’s practically infinite and can be frustratingly complex. That’s why some chemists are turning to artificial intelligence: AI can explore chemical space faster than humans, and it might be able to find molecules that would elude even expert scientists. But as researchers work to build and refine these AI tools, many questions still remain about how AI can best help search chemical space and when AI will be able to assist the wider chemistry community.

Outer space isn’t the only frontier curious humans are investigating. Chemical space is the conceptual territory inhabited by all possible compounds. It’s where scientists have found every known medicine and material, and it’s where we’ll find the next treatment for cancer and the next light-absorbing substance for solar cells.

But searching chemical space is far from trivial. For one thing, it might as well be infinite. An upper estimate says it contains 10180 compounds, more than twice the magnitude of the number of atoms in the universe. To put that figure in context, the CAS database—one of the world’s largest—currently contains about 108 known organic and inorganic substances, and scientists have synthesized only a fraction of those in the lab. (CAS is a division of the American Chemical Society, which publishes C&EN.) So we’ve barely seen past our own front doorstep into chemical space.

Oct 13, 2020

Wearable IT devices: Dyeing process gives textiles electronic properties

Posted by in categories: chemistry, computing, wearables

“Our goal was to integrate interactive functionalities directly into the fibers of textiles instead of just attaching electronic components to them,” says Jürgen Steimle, computer science professor at Saarland University. In his research group on human-computer interaction at Saarland Informatics Campus, he and his colleagues are investigating how computers and their operation can be integrated as seamlessly as possible into the physical world. This includes the use of electro-interactive materials.

Previous approaches to the production of these textiles are complicated and influence the haptics of the material. The new method makes it possible to convert textiles and garments into e-textiles, without affecting their original properties—they remain thin, stretchable and supple. This creates new options for quick and versatile experimentation with new forms of e-textiles and their integration into IT devices.

“Especially for devices worn on the body, it is important that they restrict movement as little as possible and at the same time can process high-resolution input signals”, explains Paul Strohmeier, one of the initiators of the project and a scientist in Steimle’s research group. To achieve this, the Saarbrücken researchers are using the in-situ polymerization process. Here, the are “dyed” into the fabric: a textile is subjected to a chemical reaction in a water bath, known as polymerization, which makes it electrically conductive and sensitive to pressure and stretching, giving it so-called piezoresistive properties. By “dyeing” only certain areas of a or polymerizing individual threads, the computer scientists can produce customized e-textiles.