Menu

Blog

Archive for the ‘chemistry’ category: Page 275

Nov 4, 2020

Researchers discover a new way to produce hydrogen using microwaves

Posted by in categories: chemistry, energy, transportation

A team of researchers from the Polytechnic University of Valencia and the Spanish National Research Council (CSIC) has discovered a new method that makes it possible to transform electricity into hydrogen or chemical products solely using microwaves—without cables and without any type of contact with electrodes. This represents a revolution in the field of energy research and a key development for the process of industrial decarbonisation, as well as for the future of the automotive sector and the chemical industry, among many others. The study has been published in the latest edition of Nature Energy, where the discovery is explained.

The technology developed and patented by the UPV and CSIC is based on the phenomenon of the reduction of solid materials. This method makes it possible to carry out electrochemical processes directly without requiring electrodes, which simplifies and significantly cheapens its practical use, as it provides more freedom in the design of the structure of the device and choosing the operation conditions, mainly the temperature. It is a technology with great practical potential, especially for its use in storing energy and producing synthetic fuels and green chemical products. This aspect has significant importance today, as both transportation and industry are immersed in a transition to decarbonise, meaning they have to meet very demanding goals between 2030 and 2040 to decrease the consumption of energy and substances from fossil sources, mainly natural gas and oil, highlights José Manuel Serra, research lecturer of the CSIC at the Chemical Technology Institute.

Nov 4, 2020

Science of Building Bones with Eggshells and Origami

Posted by in categories: bioengineering, biotech/medical, chemistry, life extension, science

Origami-inspired tissue engineering — using eggshells, plant leaves, marine sponges, and paper as substrates.


Ira Pastor ideaXme life sciences ambassador interviews Dr. Gulden Camci-Unal, Ph.D. Assistant Professor, at the Department Chemical Engineering, Francis College of Engineering, UMass Lowell.

Continue reading “Science of Building Bones with Eggshells and Origami” »

Nov 1, 2020

How Coronavirus Can Be Stopped: 3D Atomic Map of COVID-19’s Viral Replication Mechanism

Posted by in categories: biological, biotech/medical, chemistry, particle physics

To better understand how the novel coronavirus behaves and how it can be stopped, scientists have completed a three-dimensional map that reveals the location of every atom in an enzyme molecule critical to SARS-CoV-2 reproduction.

Researchers at the Department of Energy’s Oak Ridge National Laboratory used neutron scattering to identify key information to improve the effectiveness of drug inhibitors designed to block the virus’s replication mechanism. The research is published in the Journal of Biological Chemistry.

The SARS-CoV-2 virus, which causes the COVID-19 disease, expresses long chains of proteins composed of approximately 1,900 amino acid residues. For the virus to reproduce, those chains have to be broken down and cut into smaller strands by an enzyme called the main protease. The active protease enzyme is formed from two identical protein molecules held together by hydrogen bonds. Developing a drug that inhibits or blocks the protease activity will prevent the virus from replicating and spreading to other cells in the body.

Oct 31, 2020

Bengaluru Engineers Create World’s First Plastic As Strong As Steel, While Staying Lightweight

Posted by in categories: chemistry, transportation

If this thing becomes successful, I think it could enable plastics to replace steel in a lot of vehicles and machinery.


Engineers are always on the lookout for materials that can improve the performance of their existing products. Carmakers too are always on the lookout to make lighter yet stronger parts to help cars perform better. And, in most cases, these solutions come at a pretty hefty cost.

Continue reading “Bengaluru Engineers Create World’s First Plastic As Strong As Steel, While Staying Lightweight” »

Oct 30, 2020

Flash graphene rocks strategy for plastic waste

Posted by in categories: chemistry, sustainability

Plastic waste comes back in black as pristine graphene, thanks to ACDC.

That’s what Rice University scientists call the process they employed to make efficient use of waste that would otherwise add to the planet’s environmental woes. In this instance, the lab of Rice chemist James Tour modified its method to make flash graphene to enhance it for recycling plastic into graphene.

The lab’s study appears in the American Chemical Society journal ACS Nano.

Oct 29, 2020

Team finds path to nanodiamond from graphene

Posted by in categories: chemistry, nanotechnology

Marrying two layers of graphene is an easy route to the blissful formation of nanoscale diamond, but sometimes thicker is better.

While it may only take a bit of heat to turn a treated bilayer of the ultrathin material into a cubic lattice of diamane, a bit of in just the right place can convert few-layer graphene as well.

The otherwise chemically driven process is theoretically possible according to scientists at Rice University, who published their most recent thoughts on making high-quality diamane—the 2-D form of diamond—in the journal Small.

Oct 29, 2020

How Two MIT Grads Created A Painless Mist To Repair And Rejuvenate Skin Without Needles Or Creams

Posted by in category: chemistry

Two MIT chemical engineers launched Droplette, which has garnered nearly $10 million in funding. The company’s device delivers skincare actives like vitamin C, retinol and collagen through a mist. Founders Madhavi Gavini and Rathi Srinivas learned about entrepreneurship and more during development.

Oct 28, 2020

Scientists discover new organic compounds that could have helped form the first cells

Posted by in categories: biological, chemistry, evolution

Chemists studying how life started often focus on how modern biopolymers like peptides and nucleic acids contributed, but modern biopolymers don’t form easily without help from living organisms. A possible solution to this paradox is that life started using different components, and many non-biological chemicals were likely abundant in the environment. A new survey conducted by an international team of chemists from the Earth-Life Science Institute (ELSI) at Tokyo Institute of Technology and other institutes from Malaysia, the Czech Republic, the U.S. and India, has found that a diverse set of such compounds easily form polymers under primitive environmental conditions, and some even spontaneously form cell-like structures.

Understanding how life started on Earth is one of the most challenging questions seeks to explain. Scientists presently study modern and try to see what aspects of their biochemistry are universal, and thus were probably present in the organisms from which they descended. The best guess is that life has thrived on Earth for at least 3.5 billion of Earth’s 4.5-billion-year history since the planet formed, and most scientists would say life likely began before there is good evidence for its existence. Problematically, since Earth’s surface is dynamic, the earliest traces of life on Earth have not been preserved in the geological record. However, the earliest evidence for life on Earth tells us little about what the earliest organisms were made of, or what was going on inside their cells. “There is clearly a lot left to learn from prebiotic chemistry about how life may have arisen,” says the study’s co-author Jim Cleaves.

A hallmark of life is evolution, and the mechanisms of evolution suggest that common traits can suddenly be displaced by rare and novel mutations which allow mutant organisms to survive better and proliferate, often replacing previously common organisms very rapidly. Paleontological, ecological and laboratory evidence suggests this occurs commonly and quickly. One example is an invasive organism like the dandelion, which was introduced to the Americas from Europe and is now a commo weed causing lawn-concerned homeowners to spend countless hours of effort and dollars to eradicate.

Oct 27, 2020

Study shows how tiny compartments could have preceded cells

Posted by in categories: bioengineering, chemistry

One of the most important questions in science is how life began on Earth.

One theory is that wet-dry cycling on the early Earth—whether through rainy/dry periods, or through phenomena such as geysers—encouraged molecular complexity. The hydration/rehydration cycle is thought to have created conditions that allowed membraneless compartments called complex coacervates to act as homes for chemicals to combine to create life.

Using the Advanced Photon Source at Argonne National Laboratory, scientists in the Pritzker School of Molecular Engineering (PME) at the University of Chicago studied these compartments as they undergo phase changes to understand just what happens inside them during wet-dry cycle.

Oct 27, 2020

Geochemistry and the Origin of Life: From Extraterrestrial Processes, Chemical Evolution on Earth, Fossilized Life’s Records, to Natures of the Extant Life

Posted by in categories: chemistry, evolution

Scientists today are quick to point out that they are still basing their models on life as we know it: Carbon-based and reliant on organic compounds and water…


In 2001, the first author (S.N.) led the publication of a book entitled “Geochemistry and the origin of life” in collaboration with Dr. Andre Brack aiming to figure out geo- and astro-chemical processes essential for the emergence of life. Since then, a great number of research progress has been achieved in the relevant topics from our group and others, ranging from the extraterrestrial inputs of life’s building blocks, the chemical evolution on Earth with the aid of mineral catalysts, to the fossilized records of ancient microorganisms. Here, in addition to summarizing these findings for the origin and early evolution of life, we propose a new hypothesis for the generation and co-evolution of photosynthesis with the redox and photochemical conditions on the Earth’s surface. Besides these bottom-up approaches, we introduce an experimental study on the role of water molecules in the life’s function, focusing on the transition from live, dormant, and dead states through dehydration/hydration. Further spectroscopic studies on the hydrogen bonding behaviors of water molecules in living cells will provide important clues to solve the complex nature of life.

Keywords: building blocks, biopolymers, polymerization, extraterrestrial inputs, mineral surfaces, metabolism, photosynthesis, water, hydrogen bonding (9: 3–10)

Continue reading “Geochemistry and the Origin of Life: From Extraterrestrial Processes, Chemical Evolution on Earth, Fossilized Life’s Records, to Natures of the Extant Life” »