Menu

Blog

Archive for the ‘chemistry’ category: Page 285

Aug 20, 2020

Genetic background may affect adaptions to aging

Posted by in categories: biotech/medical, chemistry, genetics, life extension, neuroscience

How we adapt to aging late in life may be genetically influenced, according to a study led by a psychologist at the University of California, Riverside.

The research, published in Aging Cell, has implications for how relate to aging. Epigenesis is a process in which chemicals attached to DNA control its activity. Epigenetic changes, which can be passed on to offspring, may be critical to accelerated aging as well as declines in cognitive and physical functioning that often accompany aging. Epigenetic modifications resulting in altered may occur due to a number of biological processes, including one the researchers focused on: DNA methylation.

In DNA methylation, groups are added to the DNA molecule. DNA has four different types of nucleotides: A, T, G, and C. DNA methylation occurs at the C bases of eukaryotic DNA. Changes in DNA methylation correlate strongly with aging.

Aug 19, 2020

Anti-aging drug targets Alzheimer’s

Posted by in categories: biotech/medical, chemistry, food, life extension, neuroscience

Scientists investigating Alzheimer’s treatments at the Salk Institute have uncovered some key mechanisms that enable an experimental drug to reverse memory loss in mouse models of the disease. The discovery not only bodes well for the possibility of clinical trials, but provides researchers with a new target to consider in the wider development of compounds to counter the degenerative effects of the condition.

The research centers on a drug called CMS121, which is a synthetic version of a chemical called fisetin that occurs naturally in fruits and vegetables. The Salk team’s previous studies concerning CMS121 have produced some very promising results, with one paper published last year describing how the drug influences age-related metabolic pathways in the brain, protecting against the type of degeneration associated with Alzheimer’s. This followed earlier studies demonstrating how fisetin can prevent memory loss in mice engineered to develop Alzheimer’s.

Work continues at Salk to understand how exactly fisetin and the synthetic variant CMS121 produces these anti-aging effects on the brain. In their latest study, the researchers again turned to mice engineered to develop Alzheimer’s, which were administered daily doses of CMS121 from the age of nine months. This is the equivalent to middle age in humans, with the mice already exhibiting learning and memory problems before the treatment began.

Aug 19, 2020

Bacteria can defuse dangerous chemical in Passaic River

Posted by in categories: biological, chemistry

Bacteria that can help defuse highly toxic dioxin in sediments in the Passaic River—a Superfund hazardous waste site—could eventually aid cleanup efforts at other dioxin-contaminated sites around the world, according to Rutgers scientists.

Their research, published in the journal Environmental Science & Technology, needs further work to realize the full potential of the beneficial bottom-dwelling microbes.

“The bacteria-driven process we observed greatly decreases the toxicity of ,” said senior author Donna E. Fennell, a professor who chairs the Department of Environmental Sciences in the School of Environmental and Biological Sciences at Rutgers University–New Brunswick.

Aug 19, 2020

A Wood Product Stronger than Steel that Could Change the World

Posted by in categories: biotech/medical, chemistry, mobile phones, weapons

Circa 2018


Measuring one million times less than the width of a human hair, graphene is harder than diamonds and 200 times stronger than steel. Small, strong, and flexible, it is the most conductive material on earth and has the potential to charge a cell phone in just five seconds or to upload a terabit of data in one. It can be used to filter salt from water, develop bullet-stopping body armor, and create biomicrorobots.

These incredible properties have captured the attention of scientists and industry specialists around the world, all seeking to harness graphene’s potential for applications in electronics, energy, composites and coatings, biomedicine, and other industries.

Continue reading “A Wood Product Stronger than Steel that Could Change the World” »

Aug 18, 2020

Inner Complexity of Saturn Moon, Enceladus, revealed

Posted by in categories: chemistry, space

Enceladus’ subsurface ocean composition hints at habitable conditions. A Southwest Research Institute team developed a new geochemical model that reveals that carbon dioxide (CO2) from within Enceladus, an ocean-harboring moon of Saturn, may be controlled by chemical reactions at its seafloor. Studying the plume of gases and frozen sea spray released through cracks in the moon’s icy surface suggests an interior more complex than previously thought.

“By understanding the composition of the plume, we can learn about what the ocean is like, how it got to be this way and whether it provides environments where life as we know it could survive,” said SwRI’s Dr. Christopher Glein, lead author of a paper in Geophysical Research Letters outlining the research. “We came up with a new technique for analyzing the plume composition to estimate the concentration of dissolved CO2 in the ocean. This enabled modeling to probe deeper interior processes.”

Analysis of mass spectrometry data from NASA’s Cassini spacecraft indicates that the abundance of CO2 is best explained by geochemical reactions between the moon’s rocky core and liquid water from its subsurface ocean. Integrating this information with previous discoveries of silica and molecular hydrogen (H2) points to a more complex, geochemically diverse core.

Aug 18, 2020

Shining light into the dark: New discovery makes microscopic imaging possible in dark conditions

Posted by in categories: biological, chemistry

Curtin University researchers have discovered a new way to more accurately analyze microscopic samples by essentially making them glow in the dark through the use of chemically luminescent molecules.

Lead researcher Dr. Yan Vogel from the School of Molecular and Life Sciences said current methods of microscopic imaging rely on fluorescence, which means a light needs to be shining on the while it is being analyzed. While this method is effective, it also has some drawbacks.

“Most biological cells and chemicals generally do not like exposure to light because it can destroy things—similar to how certain plastics lose their colors after prolonged sun exposure, or how our skin can get sunburned,” Dr. Vogel said. “The light that shines on the samples is often too damaging for the living specimens and can be too invasive, interfering with the biochemical process and potentially limiting the study and scientists’ understanding of the living organisms.”

Aug 17, 2020

New ‘PEDOT’ Polymer May Allow Human Brain to Merge With AI, Cure and Detect Diseases, Scientists Say

Posted by in categories: biotech/medical, chemistry, robotics/AI

The discovery has led to a new polymer that allows humans to integrate electronics into the brain after challenges with substances such as gold, steel and silicon resulted in scarring of organic tissue.

A major breakthrough in materials research may allow the human brain to link with artificial intelligence, it was announced at an American Chemical Society Fall 2020 event on Monday.

Scarring due to previously used materials can block electrical signals transmitted from computers to the brain, but University of Delaware researchers developed new types of polymers aimed at overcoming the risks.

Aug 17, 2020

New Research Suggests Terpenes And CBD Work 2X’s Better For Covid-19 Inflammation Than Corticosteroid

Posted by in categories: biotech/medical, chemistry

In the fight against Covid-19, cytokine storms are one of the most deadly factors that doctors are battling. This symptom in severe cases of the novel coronavirus can lead to excessive inflammation, swelling, pain, and loss of organ function. It can even cause the immune system to ramp up so much that it starts killing the body’s own cells — instead of just fighting the infection. In serious cases, this can lead to death, as we’ve seen in many cases of severe Covid-19.

In the last few months, researchers have been looking at whether cannabis, or it’s many chemical compounds, might help to fight this deadly effect by bringing down inflammation. Recently, we’ve seen positive results from studies suggesting that CBD, a compound in cannabis, may help fight these cytokine storms.

Now early results from an ongoing Israeli study are adding to the chorus of researchers suggesting that cannabis’ ingredients could be a game changing treatment in the fight against Covid-19. But this study says that terpenes, compounds that provide the aroma and flavor in cannabis and many other plants, may lead to even better results than CBD alone, and might outperform conventional treatments like corticosteroids. Reports from the study show that a combination of CBD with terpenes was 2 times more effective at inhibiting cytokine activity than dexamethasone, a corticosteroid which a recent study found to be an effective treatment for Covid-19 cytokine storms.

Aug 17, 2020

‘Cyborg’ technology could enable new diagnostics, merger of humans and AI

Posted by in categories: chemistry, cyborgs, robotics/AI

Although true “cyborgs”—part human, part robotic beings—are science fiction, researchers are taking steps toward integrating electronics with the body. Such devices could monitor for tumor development or stand in for damaged tissues. But connecting electronics directly to human tissues in the body is a huge challenge. Now, a team is reporting new coatings for components that could help them more easily fit into this environment.

The researchers will present their results today at the American Chemical Society (ACS) Fall 2020 Virtual Meeting & Expo.

“We got the idea for this project because we were trying to interface rigid, inorganic microelectrodes with the brain, but brains are made out of organic, salty, live materials,” says David Martin, Ph.D., who led the study. “It wasn’t working well, so we thought there must be a better way.”

Aug 17, 2020

One step closer to implanting electronics in the body

Posted by in categories: chemistry, computing, neuroscience

Dopamine, dopamine, wherefore art thou my dopamine?

Oh wait, I just need to press a button on my computer for that!


The American Chemical Society (ACS) are closer to using electronics in the body, to diagnose tumours and track illnesses: Read about it on OAG.