Menu

Blog

Archive for the ‘chemistry’ category: Page 32

Jul 25, 2024

New Way of Making Superheavy Elements May Bring ‘Island of Stability’ within Reach

Posted by in category: chemistry

A novel way of making superheavy elements could soon add a new row to the periodic table, allowing scientists to explore uncharted atomic realms.

By Max Springer

Jul 25, 2024

What Houston universities gain from DARPA semiconductor award

Posted by in categories: biotech/medical, chemistry, genetics

A new study by scientists at deCODE Genetics shows that sequence variants drive the correlation between DNA methylation and gene expression. The same variants are linked to various diseases and other human traits.

The research is published in the journal Nature Genetics under the title “The correlation between CpG methylation and is driven by sequence variants.”

Nanopore sequencing is a new technology developed by ONT (Oxford Nanopore Technology), that enables us to analyze DNA sequences in . With this technology, DNA molecules are drawn through tiny protein pores, and real-time measurements of electric current indicate which nucleotides in the DNA have passed through the pores. This allows the sequence of nucleotides in the DNA to be read, while also making it possible to detect chemical modifications of the nucleotides from these same measurements.

Jul 25, 2024

Scientists plan climate engineering experiment in ocean off Cape Cod

Posted by in categories: chemistry, climatology, engineering, sustainability

Scientists from the Woods Hole Oceanographic Institution are seeking a federal permit to experiment in the waters off Cape Cod and see if tweaking the ocean’s chemistry could help slow climate change.

If the project moves forward, it will likely be the first ocean field test of this technology in the U.S. But the plan faces resistance from both environmentalists and the commercial fishing industry.

The scientists want to disperse 6,600 gallons of sodium hydroxide — a strong base — into the ocean about 10 miles south of Martha’s Vineyard. The process, called ocean alkalinity enhancement or OAE, should temporarily increase that patch of water’s ability to absorb carbon dioxide from the air. This first phase of the project, targeted for early fall, will test chemical changes to the seawater, diffusion of the chemical and effects on the ecosystem.

Jul 24, 2024

Emergent Properties (Stanford Encyclopedia of Philosophy)

Posted by in categories: biological, chemistry, climatology, particle physics, space

A very relevant subject for research.


The world appears to contain diverse kinds of objects and systems—planets, tornadoes, trees, ant colonies, and human persons, to name but a few—characterized by distinctive features and behaviors. This casual impression is deepened by the success of the special sciences, with their distinctive taxonomies and laws characterizing astronomical, meteorological, chemical, botanical, biological, and psychological processes, among others. But there’s a twist, for part of the success of the special sciences reflects an effective consensus that the features of the composed entities they treat do not “float free” of features and configurations of their components, but are rather in some way(s) dependent on them.

Consider, for example, a tornado. At any moment, a tornado depends for its existence on dust and debris, and ultimately on whatever micro-entities compose it; and its properties and behaviors likewise depend, one way or another, on the properties and interacting behaviors of its fundamental components. Yet the tornado’s identity does not depend on any specific composing micro-entity or configuration, and its features and behaviors appear to differ in kind from those of its most basic constituents, as is reflected in the fact that one can have a rather good understanding of how tornadoes work while being entirely ignorant of particle physics.

Jul 23, 2024

A hybrid supercomputer: Researchers integrate a quantum computer into a high-performance computing environment

Posted by in categories: chemistry, energy, quantum physics, supercomputing

Working together, the University of Innsbruck and the spin-off AQT have integrated a quantum computer into a high-performance computing (HPC) environment for the first time in Austria. This hybrid infrastructure of supercomputer and quantum computer can now be used to solve complex problems in various fields such as chemistry, materials science or optimization.

Demand for computing power is constantly increasing and the consumption of resources to support these calculations is growing. Processor clock speeds in conventional computers, typically a few GHz, appear to have reached their limit.

Performance improvements over the last 10 years have focused primarily on the parallelization of tasks using multi-core systems, which are operated in HPC centers as fast networked multi-node computing clusters. However, computing power only increases approximately linearly with the number of nodes.

Jul 23, 2024

Two-Step Secret: Scientists Solve Electrochemical Biotechnology Mystery

Posted by in categories: biotech/medical, chemistry, computing, neuroscience

New research has revealed that the lag observed in organic electrochemical transistors (OECTs) when switched on is due to a two-step activation process, providing crucial insights for designing more effective and customizable OECTs for various technological and biological applications.

Researchers who want to bridge the divide between biology and technology spend a lot of time thinking about translating between the two different “languages” of those realms.

“Our digital technology operates through a series of electronic on-off switches that control the flow of current and voltage,” said Rajiv Giridharagopal, a research scientist at the University of Washington. “But our bodies operate on chemistry. In our brains, neurons propagate signals electrochemically, by moving ions — charged atoms or molecules — not electrons.”

Jul 23, 2024

Whoever Controls Electrolytes will Pave the way for Electric Vehicles

Posted by in categories: chemistry, energy, sustainability, transportation

Whoever Controls #Electrolytes will Pave the way for #ElectricVehicles.

Team from the Dept of Chemistry at POSTECH have achieved a breakthrough in creating a gel electrolyte-based battery that is both stable and commercially viable…


Team develops a commercially viable and safe gel electrolyte for lithium batteries. Professor Soojin Park, Seoha Nam, a PhD candidate, and Dr. Hye Bin Son from the Department of Chemistry at Pohang University of Science and Technology (POSTECH) have achieved a breakthrough in creating a gel electrolyte-based battery that is both stable and commercially viable. Their research was recently published in the international journal Small.

Continue reading “Whoever Controls Electrolytes will Pave the way for Electric Vehicles” »

Jul 22, 2024

New Study confirms Forever Chemicals are Absorbed through Human Skin

Posted by in categories: chemistry, government

A study of 17 commonly used synthetic ‘forever chemicals’ has shown that these toxic substances can readily be absorbed through human skin.

New research, published today in Environment International proves for the first time that a wide range of PFAS (perfluoroalkyl substances) — chemicals which do not break down in nature – can permeate the skin barrier and reach the body’s bloodstream.

PFAS are used widely in industries and consumer products from school uniforms to personal care products because of their water and stain repellent properties. While some substances have been banned by government regulation, others are still widely used and their toxic effects have not yet been fully investigated.

Jul 22, 2024

Gold co-catalyst improves photocatalytic degradation of micropollutants, finds study

Posted by in categories: chemistry, nanotechnology

To remove micropollutants such as pesticides and trace chemicals from the environment, you need something equally small and cunning. One potential method is photocatalysis, which uses semiconducting nanomaterials powered by sunlight to adsorb toxic chemicals on the materials’ surface and degrade them.

Jul 21, 2024

Machine learning unlocks secrets to advanced alloys

Posted by in categories: chemistry, particle physics, robotics/AI

The concept of short-range order (SRO)—the arrangement of atoms over small distances—in metallic alloys has been underexplored in materials science and engineering. But the past decade has seen renewed interest in quantifying it, since decoding SRO is a crucial step toward developing tailored high-performing alloys, such as stronger or heat-resistant materials.

Understanding how atoms arrange themselves is no easy task and must be verified using intensive lab experiments or based on imperfect models. These hurdles have made it difficult to fully explore SRO in .

But Killian Sheriff and Yifan Cao, graduate students in MIT’s Department of Materials Science and Engineering (DMSE), are using to quantify, atom by atom, the complex chemical arrangements that make up SRO. Under the supervision of Assistant Professor Rodrigo Freitas, and with the help of Assistant Professor Tess Smidt in the Department of Electrical Engineering and Computer Science, their work was recently published in Proceedings of the National Academy of Sciences.

Page 32 of 350First2930313233343536Last