Menu

Blog

Archive for the ‘computing’ category: Page 51

May 11, 2024

New “Iontronic Memristor” Could Revolutionize Brain-Like Computing Using Only Salt and Water

Posted by in category: computing

Researchers say this novel device, barely larger than a human hair, functions as an artificial synapse, mimicking the brain’s unique ability to process and share information.

“The brain’s computing principles (neurons connected by synapses) and information carriers (ions in water) both differ fundamentally from those of conventional computers,” researchers wrote. “Building on this distinction, we present an aqueous memristor that emulates the brain’s short-term synaptic plasticity features through ion transport in water, mirroring the natural processes in the brain.”

In their findings, recently published in the Proceedings of the National Academy of Sciences, researchers highlighted that the iontronic memristor marks a significant departure from earlier models designed to mimic the brain’s communication pathways. Moreover, the device uniquely emulates the dynamic processes of human synapses in real time, using only salt and water to closely replicate how neurons transmit information naturally.

May 11, 2024

IonQ Unlocking Nature’s Computing Power

Posted by in categories: computing, quantum physics

The Quantum Insider (TQI) is the leading online resource dedicated exclusively to Quantum Computing.

May 11, 2024

Archer Materials Completes Nanodevice Fabrication, First Steps Towards Qubit Readout For 12CQ Chip

Posted by in categories: computing, quantum physics

The Quantum Insider (TQI) is the leading online resource dedicated exclusively to Quantum Computing.

May 11, 2024

Sketch of a novel approach to a neural model

Posted by in categories: computing, neuroscience

We present a novel model of neuroplasticity in the form of a horizontal-vertical integration model. The horizontal plane consists of a network of neurons connected by adaptive transmission links. This fits with standard computational neuroscience approaches. Each individual neuron also has a vertical dimension with internal parameters steering the external membrane-expressed parameters. These determine neural transmission.

May 10, 2024

Researchers develop compiler acceleration technology for quantum computers

Posted by in categories: computing, quantum physics

Researchers have succeeded in developing a technique to quickly search for the optimal quantum gate sequence for a quantum computer using a probabilistic method.

May 10, 2024

Historical Perspective: The Dynamic Birth of the Modern Great Barrier Reef

Posted by in categories: climatology, computing, sustainability

“This study has given us an historical picture of how the emerging modern reef responded to huge environmental stress,” said Dr. Jody Webster.


What events caused the Great Barrier Reef to become what it is today, specifically over the course of the last six to eight thousand years, or just after the last Ice Age? This is what a recent study published in Quaternary Science Reviews hopes to address as a team of international researchers conducted an in-depth scientific analysis on various aspects of the Great Barrier Reef to ascertain the environmental factors that contributed to the Reef’s present conditions. This study holds the potential to help scientists better understand how reefs evolve over time and the environment’s role in their evolution.

For the study, the researchers drilled almost two dozen coral samples and analyzed them using a variety of methods, including computer tomography, scanning electron microscopy, and X-ray diffraction to ascertain yearly growth patterns within the coral samples. In the end, they determined that environmental factors, including increased water temperatures, ocean turbulence, and rising sea levels, led to increased nutrients, which contributed to the growth of the Great Barrier Reef, and is consistent with previous studies.

Continue reading “Historical Perspective: The Dynamic Birth of the Modern Great Barrier Reef” »

May 10, 2024

Wide Open: NVIDIA Accelerates Inference on Meta Llama 3

Posted by in category: computing

The latest open large language model from Meta — built with NVIDIA technology — is optimized to run on NVIDIA GPUs from the cloud and data center to the edge and the PC.

May 10, 2024

Neuralink Admits That Implant’s Threads Have Retracted From First Patient’s Brain, Possibly Due to Air in Skull

Posted by in categories: biotech/medical, computing, Elon Musk, neuroscience

Not ideal!


In January, multi-hyphenate billionaire Elon Musk announced that his brain-computer interface startup Neuralink had successfully implanted a wireless brain chip into a human subject for the first time.

Over the next couple of months, 29-year-old Noland Arbaugh was shown moving a cursor with his mind, playing Civilization VI and even a fast-paced round of Mario Kart.

Continue reading “Neuralink Admits That Implant’s Threads Have Retracted From First Patient’s Brain, Possibly Due to Air in Skull” »

May 9, 2024

Ten years of neuroscience at Google yields maps of human brain

Posted by in categories: computing, mapping, neuroscience

Reconstruction of 1 mm3 of human brain (at 1.4 petabytes of EM data) published by @stardazed0 (@GoogleAI) & Lichtman lab.

Paper: https://science.org/doi/10.1126/science.adk4858

Blog:

Continue reading “Ten years of neuroscience at Google yields maps of human brain” »

May 9, 2024

‘Superfluid spacetime’ points to unification of physics

Posted by in categories: computing, cosmology, particle physics, quantum physics

Since superfluid light exists in computers I think frankly we may already solve the theory of everything because the missing piece is infinity in all things which solves all future problems.


Thinking of spacetime as a liquid may be a helpful analogy. We often picture space and time as fundamental backdrops to the universe. But what if they are not fundamental, and built instead of smaller ingredients that exist on a deeper layer of reality that we cannot sense? If that were the case, spacetime’s properties would “emerge” from the underlying physics of its constituents, just as water’s properties emerge from the particles that comprise it. “Water is made of discrete, individual molecules, which interact with each other according to the laws of quantum mechanics, but liquid water appears continuous and flowing and transparent and refracting,” explains Ted Jacobson, a physicist at the University of Maryland, College Park. “These are all ‘emergent’ properties that cannot be found in the individual molecules, even though they ultimately derive from the properties of those molecules.”

Physicists have been considering this possibility since the 1990s in an attempt to reconcile the dominant theory of gravity on a large scale — general relativity — with the theory governing the very smallest bits of the universe—quantum mechanics. Both theories appear to work perfectly within their respective domains, but conflict with one another in situations that combine the large and small, such as black holes (extremely large mass, extremely small volume). Many physicists have tried to solve the problem by ‘quantizing’ gravity — dividing it into smaller bits, just as quantum mechanics breaks down many quantities, such as particles’ energy levels, into discrete packets. “There are many attempts to quantize gravity—string theory and loop quantum gravity are alternative approaches that can both claim to have gone a good leg forward,” says Stefano Liberati, a physicist at the International School for Advanced Studies (SISSA) in Trieste, Italy.

Continue reading “‘Superfluid spacetime’ points to unification of physics” »

Page 51 of 833First4849505152535455Last