Menu

Blog

Archive for the ‘computing’ category: Page 54

May 9, 2024

Physicist achieve milestone in quantum simulation with circular Rydberg qubits

Posted by in categories: computing, particle physics, quantum physics

The paper is published in the journal Physical Review X.

In the world of and quantum simulation technology, there is a fundamental challenge when using neutral atoms: The lifetime of Rydberg atoms, which are the building blocks for quantum computing, is limited. But there is a promising solution: circular Rydberg states.

For the first time, the research team has succeeded in generating and capturing circular Rydberg atoms of an alkaline-earth metal in an array of optical tweezers.

May 8, 2024

Ozone Dynamics on Proxima Centauri b: A Key to Habitability

Posted by in categories: chemistry, climatology, computing, space

How can studying an exoplanet’s ozone help astronomers better understand its habitability potential? This is what a recent study published in the Monthly Notices of the Royal Astronomical Society hopes to address as a team of international researchers investigated how an ozone on the nearest exoplanet to Earth, Proxima Centauri b, could influence its own climate over time. This study holds the potential to help astronomers better understand how an exoplanet’s ozone could influence its formation, evolution, and potential habitability, and could have implications on how astronomers study Earth-like exoplanets throughout the cosmos.

“Imagine a world where ozone affects temperature and wind speed and holds the key to a planet’s very habitability,” said Dr. Assaf Hochman, who is a senior lecturer in the Institute of Earth Sciences at the Hebrew University of Jerusalem and a co-author on the study. “Our study unveils this intricate connection and underscores the importance of considering interactive ozone and other photochemical species in our quest to understand Earth-like exoplanets.”

For the study, the researchers used a series of computer simulations to ascertain how an active ozone on Proxima Centauri b could influence the exoplanet’s climate and potential habitability. In the end, the researchers discovered that an ozone layer on Proxima Centauri b could greatly influence the temperature and wind circulation patterns throughout its atmosphere. Additionally, they also found altitude also played a high role in the atmospheric temperature and temperature variances, as well. The researchers emphasized how these findings could help future researchers better understand the potential habitability of an exoplanet, noting how a potential ozone layer on Proxima Centauri b could greatly influence its climate.

May 8, 2024

Physicists reach atomic-scale telegraphy with light

Posted by in categories: computing, quantum physics

“They just have to stay underneath the tip until the light field changes its direction to be able to return.” By looking at an atomically thin insulator—a material that resists electrons spreading—the physicists got a first glimpse of these ultrafast matter currents and can now look into previously hidden atomic-scale dynamics in insulating layers ubiquitous in electronics and photovoltaics.

These new results present a groundbreaking advance in optical microscopy, bringing it to the ultimate length and time scales simultaneously. Direct observation of ultrafast tunneling currents could enable unprecedented understanding of electronic dynamics in quantum materials and quantum platforms for computing and data storage.

NOTE furthermore opens the door to atomic-scale strong-field dynamics such as lightwave electronics. The discovery of this communication channel with the quantum world could, just like Hertz’s findings over 100 years ago, spark a revolution in information transfer. Moreover, it could be key to understanding the microscopic dynamics shaping the devices of tomorrow.

May 8, 2024

Venus May Have Once Hosted Seas Like Earth, But Is Bone Dry Today

Posted by in categories: alien life, computing, physics

The find, simulated with computer modeling, might explain what happens to liquid water across the universe.

“Water is really important for life,” said Eryn Cangi, co-author and a research scientist at the Laboratory for Atmospheric and Space Physics, in a press release. “We need to understand the conditions that support liquid water in the universe, and that may have produced the very dry state of Venus today.”

At one point, Venus might have hosted seas like Earth. So, what happened? The study’s scientists suspect that Venus underwent a powerful greenhouse event that raised temperatures to 900 degrees Fahrenheit. After this happened, all the planet’s water evaporated, leaving some droplets behind. Even the few drops that were left over might have vanished because of an ion, HCO+, in the planet’s atmosphere.

May 8, 2024

Researchers Develop Energy-Efficient Probabilistic Computer by Combining CMOS with Stochastic Nanomagnet

Posted by in categories: computing, information science, nanotechnology, particle physics

In this study, graduate student Keito Kobayashi and Professor Shunsuke Fukami from Tohoku University, along with Dr. Kerem Camsari from the University of California, Santa Barbara, and their colleagues, developed a near-future heterogeneous version of a probabilistic computer tailored for executing probabilistic algorithms and facile manufacturing.

“Our constructed prototype demonstrated that excellent computational performance can be achieved by driving pseudo random number generators in a deterministic CMOS circuit with physical random numbers generated by a limited number of stochastic nanomagnets,” says Fukami. “Specifically speaking, a limited number of probabilistic bits (p-bits) with a stochastic magnetic tunnel junction (s-MTJ), should be manufacturable with a near-future integration technology.”

The researchers also clarified that the final form of the spintronics probabilistic computer, primarily composed of s-MTJs, will yield a four-order-of-magnitude reduction in area and a three-order-of-magnitude reduction in energy consumption compared to the current CMOS circuits when running probabilistic algorithms.

May 8, 2024

Intel issues official statement on Core K-series crashes: stick to Intel’s official power profiles

Posted by in category: computing

‘Baseline Settings’ aren’t official Intel settings.

May 8, 2024

CRISPR Enzyme Found in Metagenomic Study Is Tiny, Yet Active and Precise

Posted by in categories: bioengineering, biotech/medical, computing, genetics, health

The results of a metagenomic study from the University of Trento suggest that the CRISPR toolbox will need to make room for another CRISPR enzyme. The disruption should be minimal because the newly identified enzyme is unusually compact. It consists of just over 1,000 amino acids. And yet it is also strongly active and highly precise. The hope is that it can be packaged with guide RNA within the tight quarters afforded by adeno-associated virus (AAV) vectors, and thereby expand the use of in vivo gene editing in therapeutic applications.

The study was led by Anna Cereseto, PhD, and Nicola Segata, PhD, of the department of cellular, computational, and integrative biology. Cereseto leads a laboratory that develops advanced genome editing technologies and their application in the medical sector. Segata is the head of a laboratory of metagenomics, where he studies the variety and characteristics of the human microbiome and its role in health. Their collaboration has led to the identification, in a bacterium of the intestine, of new CRISPR-Cas9 molecules that could have a clinical potential to treat genetic diseases.

Detailed findings from the study recently appeared in Nature Communications, in an article titled, “CoCas9 is a compact nuclease from the human microbiome for efficient and precise genome editing.”

May 8, 2024

How quantum physics could ‘revolutionise everything’

Posted by in categories: computing, quantum physics

From unhackable communication networks to powerful computers, quantum technology promises huge advances.

May 8, 2024

Some problems of the very intuitive evolutionary emergentist paradigm trying to explain consciousness from neurons

Posted by in categories: computing, neuroscience

Some problems of the very intuitive evolutionary emergentist paradigm trying to explain consciousness from neurons, thanks to Andrés Gómez Emilsson and Chris Percy at Qualia Research Institute:

The “Slicing Problem” is a thought experiment that raises questions for substrate-neutral computational theories of consciousness, particularly, in functionalist approaches.

The thought experiment uses water-based logic gates to construct a computer in a way that permits cleanly slicing each gate and connection in half, creating two identical computers each instantiating the same computation. The slicing can be reversed and repeated via an on/off switch, without changing the amount of matter in the system.

May 8, 2024

X-ray study offers first look at a quantum version of the liquid-crystal phase

Posted by in categories: biotech/medical, computing, quantum physics

Ever since superconductivity was discovered in the early 1900s, it has both captivated and mystified scientists. Superconductors conduct electricity with virtually zero resistance, allowing for highly efficient transmission of electrical currents. Among other uses, they create the strong magnetic fields we depend on for medical imaging with MRI machines.

The first known superconductor, mercury, only works when the temperature dips just below-450 F. Copper-containing materials called cuprates were found in the ’80s to become superconductors at warmer temperatures, though still inconveniently cold — closer to-200 F. Understanding how these so-called high-temperature superconductors work could eventually lead to ones that can operate in less frigid conditions.

One potential hallmark of high-temperature superconductors has remained purely theoretical, until now. A team of scientists, including several from the U.S. Department of Energy’s (DOE) Argonne National Laboratory, has observed an elusive state of matter called quantum spin nematic. The study, which was published in the journal Nature (“Quantum spin nematic phase in a square-lattice iridate”), used the Advanced Photon Source (APS), a DOE Office of Science user facility at Argonne that also happens to use superconductors. The results lend insight on both high-temperature superconductivity and some of the physics involved in quantum computing.

Page 54 of 835First5152535455565758Last