Menu

Blog

Archive for the ‘computing’ category: Page 70

Jul 9, 2024

Top 9 Quantum Computing Companies to Watch in 2024: Who Is Making the Difference?

Posted by in categories: computing, quantum physics

Explore the leading quantum computing companies that are shaping the future of technology. Learn what projects are worth your attention.

Jul 9, 2024

Intel begins groundwork on Magdeburg chip fab despite 13 remaining regulatory and environmental objections

Posted by in category: computing

Fab 29.1 and Fab 29.2 will span roughly 81,000 square meters, with a combined length of 530 meters and a width of 153 meters. Including roof structures for air conditioning and heating, the buildings will reach a height of 36.7 meters, with several underground floors as well. The cross-section plans show multiple above-ground floors with heights ranging from 5.7 to 6.5 meters.

Initially, construction of Intel’s Fab 29 was scheduled to begin in the first half of 2023, but delays in subsidy approvals pushed the start to the summer of 2024. Recently it turned out that construction of Intel’s Fab 29 modules 1 and 2 near Magdeburg, Germany, has been delayed to May 2025 due to the pending approval of EU subsidies and the requirement to relocate black soil for reuse at another site.

Intel’s Fab 29 modules 1 and 2 were initially scheduled to start operations in late 2027 and make chips on Intel’s 14A (1.4nm) and 10A (1nm) production nodes. Typically, Intel launches new client PC products in the second half of the year and ramps up production in the first half. The fabs were intended to produce client PC products set for release in the second half of 2028. Although production could begin if the fabs were ready by mid-2028, the timeline would be tight. However, some of the latest reports indicate a different schedule, estimating four to five years for construction, with production now expected to start between 2029 and 2030.

Jul 8, 2024

How Quantum Computing Is Already Changing the World

Posted by in categories: computing, encryption, quantum physics, security

The power of quantum computing drives a desperate need for quantum encryption. This megatrend is creating a multi-billion-dollar security market.

Jul 8, 2024

Engineers develop advanced optical computing method for multiplexed data processing and encryption

Posted by in categories: computing, encryption, security

Engineers at the University of California, Los Angeles (UCLA) have unveiled a major advancement in optical computing technology that promises to enhance data processing and encryption. The work is published in the journal Laser & Photonics Reviews.

This innovative work, led by Professor Aydogan Ozcan and his team, showcases a reconfigurable diffractive optical network capable of executing high-dimensional permutation operations, offering a significant leap forward in telecommunications and data security applications.

Permutation operations, essential for various applications, including telecommunications and encryption, have traditionally relied on electronic hardware. However, the UCLA team’s advancement uses all-optical diffractive computing to perform these operations in a multiplexed manner, significantly improving efficiency and scalability.

Jul 8, 2024

A new approach to realize quantum mechanical squeezing

Posted by in categories: computing, quantum physics, space

Mechanical systems are highly suitable for realizing applications such as quantum information processing, quantum sensing and bosonic quantum simulation. The effective use of these systems for these applications, however, relies on the ability to manipulate them in unique ways, specifically by ‘squeezing’ their states and introducing nonlinear effects in the quantum regime.

A research team at ETH Zurich led by Dr. Matteo Fadel recently introduced a new approach to realize quantum squeezing in a nonlinear mechanical oscillator. This approach, outlined in a paper published in Nature Physics, could have interesting implications for the development of quantum metrology and sensing technologies.

“Initially, our goal was to prepare a mechanical squeezed state, namely a quantum state of motion with reduced quantum fluctuations along one phase-space direction,” Fadel told Phys.org. “Such states are important for and quantum simulation applications. They are one of the in the universal gate set for quantum computing with continuous-variable systems—meaning mechanical degrees of freedom, , etc., as opposed to qubits that are discrete-variable systems.”

Jul 8, 2024

New material paves the way to on-chip energy harvesting

Posted by in categories: chemistry, computing

Researchers from Germany, Italy, and the UK have achieved a major advance in the development of materials suitable for on-chip energy harvesting. By composing an alloy made of silicon, germanium and tin, they were able to create a thermoelectric material, promising to transform the waste heat of computer processors back into electricity.

With all elements coming from the 4th main group of the periodic table, these new semiconductor alloy can be easily integrated into the CMOS process of chip production. The research findings are published in ACS Applied Energy Materials.

The increasing use of electronic devices in all aspects of our lives is driving up energy consumption. Most of this energy is dissipated into the environment in the form of heat.

Jul 8, 2024

Flying Qudits: Unlocking New Dimensions of Quantum Communication

Posted by in categories: computing, encryption, internet, quantum physics, security

Researchers have developed a breakthrough method for quantum information transmission using light particles called qudits, which utilize the spatial mode and polarization properties to enable faster, more secure data transfer and increased resistance to errors.

This technology could greatly enhance the capabilities of a quantum internet, providing long-distance, secure communication, and leading to the development of powerful quantum computers and unbreakable encryption.

Scientists have made a significant breakthrough in creating a new method for transmitting quantum information using particles of light called qudits. These qudits promise a future quantum internet that is both secure and powerful.

Jul 8, 2024

Revolutionizing Magnetism: Polarized Light Unlocks Ultrafast Data Storage and Spintronics

Posted by in categories: computing, particle physics

New research introduces a non-thermal method for magnetization using circularly polarized XUV light, which induces significant magnetization changes through the inverse Faraday effect, potentially transforming ultrafast data storage and spintronics.

Intense laser pulses can be used to manipulate or even switch the magnetization orientation of a material on extremely short time scales. Typically, such effects are thermally induced, as the absorbed laser energy heats up the material very rapidly, causing an ultrafast perturbation of the magnetic order.

Scientists from the Max Born Institute (MBI), in collaboration with an international team of researchers, have now demonstrated an effective non-thermal approach of generating large magnetization changes. By exposing a ferrimagnetic iron-gadolinium alloy to circularly polarized pulses of extreme ultraviolet (XUV) radiation, they could reveal a particularly strong magnetic response depending on the handedness of the incoming XUV light burst (left-or right-circular polarization).

Jul 7, 2024

Samsung launches its first high-capacity (61.44TB) SSD

Posted by in categories: computing, futurism

The first Samsung 60TB SSD, the BM1743, has been launched. The company believes it is possible to launch a 120TB SSD in the future.

Jul 7, 2024

Amateur Mathematicians Find Fifth ‘Busy Beaver’ Turing Machine

Posted by in categories: computing, mathematics

After decades of uncertainty, a motley team of programmers has proved precisely how complicated simple computer programs can get.

Page 70 of 876First6768697071727374Last