Menu

Blog

Archive for the ‘computing’ category: Page 705

Jan 12, 2017

New Cooling Technique Could Aid Development Of Quantum Computers

Posted by in categories: computing, particle physics, quantum physics

Nice.


A sophisticated cooling technique — using lasers to cool individual atoms — was demonstrated at the National Institute of Standards in Technology in 1978, and is now used in a wide array of precise applications, such as atomic clocks. Using the same principle, NIST physicists have now “cooled a mechanical object to a temperature lower than previously thought possible,” passing the so-called “quantum limit” which imposes limits on accuracy for quantum scale measurements.

Described in a paper titled “Sideband cooling beyond the quantum backaction limit with squeezed light,” published Thursday in the journal Nature, the technique could theoretically be used to cool objects to absolute zero, when matter exhibits almost no energy or motion.

Continue reading “New Cooling Technique Could Aid Development Of Quantum Computers” »

Jan 12, 2017

D-Wave goes public with open-source quantum-classical hybrid software

Posted by in categories: computing, quantum physics

Nice job Geordie and Vern.


Search the universe with qbsolv

D-Wave chip

Continue reading “D-Wave goes public with open-source quantum-classical hybrid software” »

Jan 12, 2017

Semiconductor nanopyramids for building high-yield quantum photonic devices

Posted by in categories: computing, particle physics, quantum physics

Novel structures exhibit highly directional emission and provide a template for site-controlled quantum dots and self-aligned nanophotonic cavities.

Semiconductor quantum dots (QDs) are thought to be a promising candidate for a single-quantum emitter in on-chip systems because of their well-developed growth and fabrication techniques. Semiconductor QDs, however, have a number of inherent limitations that need to be overcome before they can be used in practical applications. For example, QDs in semiconductors are strongly affected by elements (e.g., phonons) in the surrounding environment, which results in short nonradiative decay times and rapid dephasing processes. Despite the high intrinsic radiative decay rates of semiconductor QDs compared with those of other single-quantum emitters (such as atoms and ions), the radiative decay rate needs to be further increased so that these fast nonradiative and dephasing processes can be overcome. Furthermore, the collection efficiency of the light that is emitted from conventional QDs embedded in a high-index planar substrate is typically low (about 4%).

Continue reading “Semiconductor nanopyramids for building high-yield quantum photonic devices” »

Jan 11, 2017

Addressing Naturalistic Objections to Extending Healthy Human Life Spans

Posted by in categories: biotech/medical, computing, life extension, neuroscience

Playing God is a common objection to developing technologies to increase human lifespan and yet it is never used in relation to current therapies already available.


Here I’ll point out another of the articles going up at the Life Extension Advocacy Foundation, this time on the topic of the naturalistic fallacy where it occurs in opposition to healthy life extension. Our community would like to build medical therapies that address the causes of aging, thereby ending age-related disease and greatly extending healthy human life spans. It has always surprised me to find that most people, at least initially, object to this goal. It seems perfectly and straightforwardly obvious to me that aging to death, suffering considerably along the way, is just as much a problem to be overcome as any other medical condition that causes pain and mortality. Yet opposition exists, and that opposition is one of the greatest challenges faced when raising funding and pushing forward with research and development of rejuvenation therapies.

When it comes to treating aging as a medical condition the naturalistic fallacy is voiced in this way: aging is natural, what is natural is good, and therefore we shouldn’t tamper with aging. If you look around at your houses, your computers, your modern medicine, and consider that such an objection is perhaps just a little late to the game, and hard to hold in a self-consistent manner, then you’re probably not alone. Notably, the same objection is rarely brought up when it comes to treating specific age-related diseases, or in the matter of therapies that already exist. People who are uncomfortable about radical changes to the course of aging and who speak out against the extension of human life are nonetheless almost all in favor of cancer research, treatments for heart disease, and an end to Alzheimer’s disease. Yet age-related diseases and aging are the same thing, the same forms of damage and dysfunction, only differing by degree and by the names they are given.

Continue reading “Addressing Naturalistic Objections to Extending Healthy Human Life Spans” »

Jan 11, 2017

A World-Renowned Futurist Reveals The Hotel Of The Future

Posted by in categories: biotech/medical, computing, virtual reality

His vision is definitely achievable.


The future of airport transfer—in a pod.

World-renowned global futurist Dr. James Canton envisions hotel experiences that include supersonic travel and DNA-driven spa treatments, so what can we expect in the next decade? Canton, a former Apple Computer executive, author and social scientist, worked in conjunction with Hotels.com, to present the Hotels of the Future Study at a recent conference in San Francisco. In the study he describes hotels with everything from RoboButlers and virtual reality entertainment to hotel restaurants based on gourmet genomics and the emergence of neurotechnology to make sleep more refreshing. Canton, who has advised three White House Administrations and over 100 companies, believes these megatrends will shape the future of the hotel experience and that the RoboButler is the change we will most likely see first. Although, he also notes that plans are already underway for a supersonic hyperloop route from Los Angeles to New York City.

Continue reading “A World-Renowned Futurist Reveals The Hotel Of The Future” »

Jan 10, 2017

Microsoft looks to tap quasiparticles to bring about a scalable quantum computer

Posted by in categories: computing, engineering, quantum physics

Microsoft has been on a quest to build the holy grail of computers for over a decade, dumping tons of money into researching quantum computing and the company says they are ready to transition over to the engineering phase of their endeavor. At least that’s what MS executive Todd Holmdahl aims to accomplish by developing the hardware and software to do so.

Read more

Jan 8, 2017

Researchers Develop New Porous Graphene Material

Posted by in categories: computing, materials

Stronger Graphene; can you imagine have a car or SUV that is solid like a Sherman Tank and weighs the same or less than your car or SUV does today; or a commercial jet that it’s fuselage remains intact when it crashes while protecting others inside; or a building that does not get ripped apart in a tornado? With this form of graphene it may be possible.


Now a team of researchers at MIT have developed a computer model that simulates fusing flakes of graphene into three-dimensional configurations.

According to the researchers, Graphene is a strong material. As such, the porous graphene material can be used in the construction industry by creating strong and light materials.

Continue reading “Researchers Develop New Porous Graphene Material” »

Jan 8, 2017

Quantum Computing on Cusp

Posted by in categories: computing, quantum physics

I have shared this many times that we’re within a 5 year window; and glad others are seeing the same thing.


A new age of quantum computing may be around the corner. Three new research groups predict that a shift away from von Neumann toward quantum computing is upon us.

Read more

Jan 8, 2017

Running an experiment in the IBM Quantum Experience

Posted by in categories: computing, information science, quantum physics

IBM Research is making quantum computing available to the public for the first time, providing access to a quantum computing platform from any desktop or mobile device via the cloud. Users of the platform called the IBM Quantum Experience can create algorithms and run experiments on an IBM quantum processor, learn about quantum computing through tutorials and simulations, and get inspired by the possibilities of a quantum computer.

To learn more about IBM’s quantum computing research and get access to the IBM Quantum Experience please visit: http://ibm.com/quantumcomputing

Read more

Jan 6, 2017

Transistor stretchier than skin for ultra-flexible wearable tech

Posted by in categories: computing, wearables

A flexible transistor can stretch to twice its length without losing its conductive properties and could be used in electronic tattoo-style wearable sensors.

Read more