Menu

Blog

Archive for the ‘computing’ category: Page 75

Jul 6, 2024

A 2D Device May Help Quantum Computers Stay Cool

Posted by in categories: computing, nanotechnology, quantum physics

PRESS RELEASE — To perform quantum computations, quantum bits (qubits) must be cooled down to temperatures in the millikelvin range (close to-273 Celsius), to slow down atomic motion and minimize noise. However, the electronics used to manage these quantum circuits generate heat, which is difficult to remove at such low temperatures. Most current technologies must therefore separate quantum circuits from their electronic components, causing noise and inefficiencies that hinder the realization of larger quantum systems beyond the lab.

Researchers in EPFL’s Laboratory of Nanoscale Electronics and Structures (LANES), led by Andras Kis, in the School of Engineering have now fabricated a device that not only operates at extremely low temperatures, but does so with efficiency comparable to current technologies at room temperature.

Jul 4, 2024

New Product Launch: Introducing Rokid AR Lite Spatial Computing AR Glasses Pack!

Posted by in categories: augmented reality, computing, mobile phones, virtual reality

AR/VR/MR glasses released in April 2024? i didnt know they were so far along already. Im curious if anyone used these, and impressions of? Still a little bulky, but, my current prediction is this will take over place of cell phones 2029/2030. But, needs to be slimmed down a bit yet; 5 years.


Step into the future with Rokid AR Lite! Our sleek and stylish design lets you take to the streets in style, while its multi-screen feature wraps around your space for seamless work and play. Activate sports mode for unwavering screen stabilization, and immerse yourself in vivid spatial videos in 3D, bringing your memories to life like never before. Don’t miss out on this revolutionary AR experience!

Continue reading “New Product Launch: Introducing Rokid AR Lite Spatial Computing AR Glasses Pack!” »

Jul 4, 2024

Researchers Achieve High Vacuum Levitation of Silica Nanoparticle, Paving the Way for Future Levitation Technologies

Posted by in categories: computing, nanotechnology

Researchers achieved high-vacuum levitation of a silica nanoparticle on a photonic-electric chip, revolutionizing nanotechnology.

Jul 3, 2024

Big Tech brings data center with 1,000 jobs to America’s heartland

Posted by in categories: computing, employment

Meta, which owns Facebook and WhatsApp, announced plans for a sprawling $800 million data center in the rural US county.

Jul 3, 2024

Scientists crack new method for high-capacity, secure quantum communication

Posted by in categories: computing, internet, particle physics, quantum physics

Scientists have made a significant breakthrough in creating a new method for transmitting quantum information using particles of light called qudits. These qudits promise a future quantum internet that is both secure and powerful. The study is published in the journal eLight.

Traditionally, is encoded on qubits, which can exist in a state of 0, 1, or both at the same time (superposition). This quality makes them ideal for complex calculations but limits the amount of data they can carry in communication. Conversely, qudits can encode information in higher dimensions, transmitting more data in a single go.

The new technique harnesses two properties of light—spatial mode and polarization—to create four-dimensional qudits. These qudits are built on a special chip that allows for precise manipulation. This manipulation translates to faster data transfer rates and increased resistance to errors compared to conventional methods.

Jul 3, 2024

Stanford Engineers a Pocket-Sized Titanium-Sapphire Super Laser

Posted by in categories: computing, neuroscience, quantum physics

In a single leap from tabletop to the microscale, engineers at Stanford University have produced the world’s first practical titanium-sapphire laser on a chip.

Researchers have developed a chip-scale Titanium-sapphire laser that is significantly smaller and less expensive than traditional models, making it accessible for broader applications in quantum optics, neuroscience, and other fields. This new technology is expected to enable labs to have hundreds of these powerful lasers on a single chip, fueled by a simple green laser pointer.

As lasers go, those made of Titanium-sapphire (Ti: sapphire) are considered to have “unmatched” performance. They are indispensable in many fields, including cutting-edge quantum optics, spectroscopy, and neuroscience. But that performance comes at a steep price. Ti: sapphire lasers are big, on the order of cubic feet in volume. They are expensive, costing hundreds of thousands of dollars each. And they require other high-powered lasers, themselves costing $30,000 each, to supply them with enough energy to function.

Jul 3, 2024

Quantum Riddle Solved? How Solid Neon Qubits Could Change Computing Forever

Posted by in categories: computing, quantum physics

Recent research has advanced the development of electron-on-solid-neon qubits, revealing key insights that improve quantum computing by extending qubit coherence times and optimizing their design.

Quantum computers have the potential to be revolutionary tools for their ability to perform calculations that would take classical computers many years to resolve.

But to make an effective quantum computer, you need a reliable quantum bit, or qubit, that can exist in a simultaneous 0 or 1 state for a sufficiently long period, known as its coherence time.

Jul 3, 2024

New open-source software for quantum cryptography is greater than the sum of its parts

Posted by in categories: computing, encryption, quantum physics

Accurate models of real-world scenarios are important for bringing theoretical and experimental research together in meaningful ways. Creating these realistic computer models, however, is a very large undertaking. Significant amounts of data, code, and expertise across a wide range of intricate areas are needed to create useful and comprehensive software.

Dr. Norbert Lütkenhaus, executive director of the Institute for Quantum Computing (IQC) and a professor in the University of Waterloo’s Department of Physics and Astronomy, alongside his research group, have spent the last several years developing accurate software models for research in quantum key distribution (QKD).

QKD is a process for cryptography that harnesses fundamental principles of quantum mechanics to exchange secret keys, which can then be used to ensure secure communication.

Jul 3, 2024

Gravitational Wave Research Reveals Missing Details on The Mysterious Antikythera Mechanism

Posted by in categories: computing, physics

Little more than a handful of corroded bronze wheels and heavily encrusted gears now remains of the ancient artifact called the Antikythera mechanism, leaving archaeologists to speculate over its functionality and purpose.

After decades of study, it’s largely agreed that the millennia-old device was something of an analog computer capable of keeping track of celestial movements. Yet with only fractured fragments to go by, researchers can only guess at the more intricate methods of its operation.

Researchers from the University of Glasgow in the UK have now used statistical modeling techniques borrowed from the study of gravitational waves to extrapolate missing details of a critical dial on Antikythera mechanism.

Jul 3, 2024

SSDs with 1000-layer memory chips expected in 2027: ultra-fast 20TB NVMe drives for $250

Posted by in categories: computing, futurism

KIOXIA teases future-gen 1000-layers of flash memory inside of SSDs that could have gigantic 20TB NVMe SSDs that would cost as little as $250.

Page 75 of 880First7273747576777879Last