Menu

Blog

Archive for the ‘encryption’ category: Page 29

May 30, 2020

Algorithm quickly simulates a roll of loaded dice

Posted by in categories: encryption, finance, information science, robotics/AI

The fast and efficient generation of random numbers has long been an important challenge. For centuries, games of chance have relied on the roll of a die, the flip of a coin, or the shuffling of cards to bring some randomness into the proceedings. In the second half of the 20th century, computers started taking over that role, for applications in cryptography, statistics, and artificial intelligence, as well as for various simulations—climatic, epidemiological, financial, and so forth.

May 29, 2020

Quantum-Resistant Cryptography: Our Best Defense Against An Impending Quantum Apocalypse

Posted by in categories: computing, encryption, information science, quantum physics, security

As far back as 2015, the National Institute of Standards and Technology (NIST) began asking encryption experts to submit their candidate algorithms for testing against quantum computing’s expected capabilities — so this is an issue that has already been front of mind for security professionals and organizations. But even with an organization like NIST leading the way, working through all those algorithms to judge their suitability to the task will take time. Thankfully, others within the scientific community have also risen to the challenge and joined in the research.

It will take years for a consensus to coalesce around the most suitable algorithms. That’s similar to the amount of time it took ECC encryption to gain mainstream acceptance, which seems like a fair comparison. The good news is that such a timeframe still should leave the opportunity to arrive at — and widely deploy — quantum-resistant cryptography before quantum computers capable of sustaining the number of qubits necessary to seriously threaten RSA and ECC encryption become available to potential attackers.

The ongoing development of quantum-resistant encryption will be fascinating to watch, and security professionals will be sure to keep a close eye on which algorithms and encryption strategies ultimately prove most effective. The world of encryption is changing more quickly than ever, and it has never been more important for the organizations dependent on that encryption to ensure that their partners are staying ahead of the curve.

May 28, 2020

A new scheme for satellite-based quantum-secure time transfer

Posted by in categories: encryption, quantum physics, satellites, security

Researchers at the University of Science and Technology of China have recently introduced a new satellite-based quantum-secure time transfer (QSTT) protocol that could enable more secure communications between different satellites or other technology in space. Their protocol, presented in a paper published in Nature Physics, is based on two-way quantum key distribution in free space, a technique to encrypt communications between different devices.

“Our main idea was to realize quantum-secure time transfer in order to resolve the in practical time–frequency transfer,” Feihu Xu, one of the researchers who carried out the study, told Phys.org.

Quantum key distribution (QKD) is a technique to achieve secure communication that utilize based on the laws of quantum mechanics. Quantum protocols can generate secret security keys based on , enabling more secure data transfer between different devices by spotting attackers who are trying to intercept communications.

May 26, 2020

First Object Teleported from Earth to Orbit

Posted by in categories: encryption, quantum physics, satellites

Essentially a quantum radar teleportation device could entangle objects anywhere in the universe.


Last year, a Long March 2D rocket took off from the Jiuquan Satellite Launch Centre in the Gobi Desert carrying a satellite called Micius, named after an ancient Chinese philosopher who died in 391 B.C. The rocket placed Micius in a Sun-synchronous orbit so that it passes over the same point on Earth at the same time each day.

Micius is a highly sensitive photon receiver that can detect the quantum states of single photons fired from the ground. That’s important because it should allow scientists to test the technological building blocks for various quantum feats such as entanglement, cryptography, and teleportation.

Continue reading “First Object Teleported from Earth to Orbit” »

May 23, 2020

Critical “Starbleed” vulnerability in FPGA chips identified

Posted by in categories: computing, encryption, mobile phones, security

April 2020


Field programmable gate arrays, FPGAs for short, are flexibly programmable computer chips that are considered very secure components in many applications. In a joint research project, scientists from the Horst Görtz Institute for IT Security at Ruhr-Universität Bochum and from Max Planck Institute for Security and Privacy have now discovered that a critical vulnerability is hidden in these chips. They called the security bug “Starbleed.” Attackers can gain complete control over the chips and their functionalities via the vulnerability. Since the bug is integrated into the hardware, the security risk can only be removed by replacing the chips. The manufacturer of the FPGAs has been informed by the researchers and has already reacted.

The researchers will present the results of their work at the 29th Usenix Security Symposium to be held in August 2020 in Boston, Massachusetts, U.S… The has been available for download on the Usenix website since April 15, 2020.

Continue reading “Critical ‘Starbleed’ vulnerability in FPGA chips identified” »

May 21, 2020

Samsung made a Galaxy S20 Tactical Edition for the military

Posted by in categories: encryption, government, military, mobile phones

Samsung has a hardened version of the Galaxy S20, but don’t reach for your credit card — it’s not what you were expecting, and you probably can’t get one. The company has introduced a Galaxy S20 Tactical Edition that, as the name suggests, is designed to meet the needs of the US military and federal government. It touts two layers of encryption strong enough to handle top secret data and connects to tactical radios and mission systems out of the box.

There are combat-related conveniences, too. One mode can turn the display on and off while you’re wearing night vision goggles, while a stealth mode turns off LTE and and mutes all RF broadcasts to eliminate even the slightest chance of eavesdropping. It’s also easy to unlock the phone in landscape mode so that you can quickly launch an app while the device is mounted to your chest.

This is otherwise a run-of-the-mill Galaxy S20 with a 6.2-inch, 1440p display, a Snapdragon 865 processor, 12GB of RAM, 128GB of expandable storage, a 4,000mAh battery and the usual arrays of front and rear cameras. Although Samsung shows the Tactical Edition in a rugged casing, there’s no mention of the phone itself being rugged.

May 17, 2020

Samsung Galaxy A Quantum announced with quantum encryption technology

Posted by in categories: encryption, internet, mobile phones, quantum physics, security

Samsung and South Korean carrier SK Telecom today announced a new 5G smartphone dubbed Galaxy A Quantum.

The Samsung Galaxy A Quantum is the world’s first 5G smartphone equipped with a quantum random number generator (QRNG) chipset, which is developed by SK Telecom’s Switzerland-based subsidiary ID Quantique.

The QRNG chipset is the SKT IDQ S2Q000 and it enhances the security of the phone’s data by using quantum encryption technology to generate random numbers and create unpredictable secure keys.

May 16, 2020

Microwave quantum illumination using a digital receiver

Posted by in categories: biotech/medical, encryption, internet, quantum physics

Quantum illumination uses entangled signal-idler photon pairs to boost the detection efficiency of low-reflectivity objects in environments with bright thermal noise. Its advantage is particularly evident at low signal powers, a promising feature for applications such as noninvasive biomedical scanning or low-power short-range radar. Here, we experimentally investigate the concept of quantum illumination at microwave frequencies. We generate entangled fields to illuminate a room-temperature object at a distance of 1 m in a free-space detection setup. We implement a digital phase-conjugate receiver based on linear quadrature measurements that outperforms a symmetric classical noise radar in the same conditions, despite the entanglement-breaking signal path. Starting from experimental data, we also simulate the case of perfect idler photon number detection, which results in a quantum advantage compared with the relative classical benchmark. Our results highlight the opportunities and challenges in the way toward a first room-temperature application of microwave quantum circuits.

Quantum sensing is well developed for photonic applications (1) in line with other advanced areas of quantum information (25). Quantum optics has been, so far, the most natural and convenient setting for implementing the majority of protocols in quantum communication, cryptography, and metrology (6). The situation is different at longer wavelengths, such as tetrahertz or microwaves, for which the current variety of quantum technologies is more limited and confined to cryogenic environments. With the exception of superconducting quantum processing (7), no microwave quanta are typically used for applications such as sensing and communication. For these tasks, high-energy and low-loss optical and telecom frequency signals represent the first choice and form the communication backbone in the future vision of a hybrid quantum internet (810).

Despite this general picture, there are applications of quantum sensing that are naturally embedded in the microwave regime. This is exactly the case with quantum illumination (QI) (11–17) for its remarkable robustness to background noise, which, at room temperature, amounts to ∼103 thermal quanta per mode at a few gigahertz. In QI, the aim is to detect a low-reflectivity object in the presence of very bright thermal noise. This is accomplished by probing the target with less than one entangled photon per mode, in a stealthy noninvasive fashion, which is impossible to reproduce with classical means. In the Gaussian QI protocol (12), the light is prepared in a two-mode squeezed vacuum state with the signal mode sent to probe the target, while the idler mode is kept at the receiver.

May 7, 2020

Intro to Quantum Computing

Posted by in categories: computing, encryption, quantum physics

Quantum computing is seen by many as a technology of the future. In this article, we’re going to look at how to run some non-trivial programs on actual quantum computers. In particular, we’re going to discuss something called graph states. Graph states are used for quantum cryptography, quantum error correction, and measurement based quantum computing. If all of that sounds like a foreign language, that’s okay. We’re going to go through everything, from the ground up, and in detail…and don’t worry, we’ll keep it light and fun.

May 2, 2020

Could Photonic Chips Outpace the Fastest Supercomputers?

Posted by in categories: encryption, quantum physics, robotics/AI, supercomputing

There’s been a lot of talk about quantum computers being able to solve far more complex problems than conventional supercomputers. The authors of a new paper say they’re on the pat h to showing an optical computer c an do so, too.

The idea of using light to carry out computing has a long pedigree, and it has gained traction in recent years with the advent of silicon photonics, which makes it possible to build optical circuits using the same underlying technology used for electronics. The technology s hows particular promise for accelerating deep learning, and is being actively pursued by Intel and a number of startups.

Now Chinese researchers have put a photonic chip t o work tackling a fiendishly complex computer science challenge called the s ubset sum problem in a paper in Science Advances. It ha s some potential applications in cryptography and resource allocation, but primarily it’s used as a benchmark to test the limits of computing.

Page 29 of 58First2627282930313233Last