Menu

Blog

Archive for the ‘engineering’ category: Page 112

Jul 18, 2021

Kenyan entrepreneur turns plastic waste into bricks, stronger than concrete

Posted by in categories: engineering, sustainability, transportation

Plastic waste, a material that can take centuries or more to disappear, is causing irreparable damage to the planet. At least 8 million tons of plastic end up in the ocean each year. In many cases, specifically in more developed countries, plastic waste is disposed of responsibly and sent to facilities to be sorted, recycled, or recovered. However, plastic waste generated in developing countries typically ends up in dumps or open, uncontrolled landfills — most of which eventually enter the ocean either through transport by wind or tides or through waterways such as rivers or wastewater. Now, many companies are recycling this waste into useful products, such as sportswear, affordable homes, electric cars, roads, etc. One of them is Gjenge Makers Ltd, a sustainable, alternative, affordable building products manufacturing company that transforms plastic waste into durable building materials. These include paving blocks, paving tiles, and manhole covers.


Nzambi Matee has used her engineering skills to develop the process that involved mixing recycled waste plastic and sand. Matee gets the wasted plastic from packaging factories for free, although she pays for the plastic she gets from other recyclers. The company workers take plastic waste, mix it with sand, and heat it up, with the resulting brick being five to seven times stronger than concrete.

Continue reading “Kenyan entrepreneur turns plastic waste into bricks, stronger than concrete” »

Jul 16, 2021

A noninvasive test to detect cancer cells and pinpoint their location

Posted by in categories: biotech/medical, computing, engineering, nanotechnology

Most of the tests that doctors use to diagnose cancer — such as mammography, colonoscopy, and CT scans — are based on imaging. More recently, researchers have also developed molecular diagnostics that can detect specific cancer-associated molecules that circulate in bodily fluids like blood or urine.

MIT engineers have now created a new diagnostic nanoparticle that combines both of these features: It can reveal the presence of cancerous proteins through a urine test, and it functions as an imaging agent, pinpointing the tumor location. In principle, this diagnostic could be used to detect cancer anywhere in the body, including tumors that have metastasized from their original locations.

“This is a really broad sensor intended to respond to both primary tumors and their metastases. It can trigger a urinary signal and also allow us to visualize where the tumors are,” says Sangeeta Bhatia, the John and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science at MIT and a member of MIT’s Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science.

Jul 16, 2021

Optical levitation of glass nanosphere enables quantum control

Posted by in categories: engineering, particle physics, quantum physics

Researchers at ETH Zurich have trapped a tiny sphere measuring a hundred nanometres using laser light and slowed down its motion to the lowest quantum mechanical state. This technique could help researchers to study quantum effects in macroscopic objects and build extremely sensitive sensors.

Why can atoms or elementary particles behave like waves according to , which allows them to be in several places at the same time? And why does everything we see around us obviously obey the laws of classical physics, where such a phenomenon is impossible? In recent years, researchers have coaxed larger and larger objects into behaving quantum mechanically. One consequence of this is that, when passing through a double slit, these objects form an that is characteristic of waves.

Up to now, this could be achieved with molecules consisting of a few thousand atoms. However, physicists hope one day to be able to observe such quantum effects with properly . Lukas Novotny, professor of photonics, and his collaborators at the Department of Information Technology and Electrical Engineering at ETH Zurich have now made a crucial step in that direction. Their results were recently published in the scientific journal Nature.

Jul 15, 2021

Nanosphere at the quantum limit

Posted by in categories: engineering, particle physics, quantum physics

Why can atoms or elementary particles behave like waves according to quantum physics, which allows them to be in several places at the same time? And why does everything we see around us obviously obey the laws of classical physics, where that is impossible? To answer those questions, in recent years researchers have coaxed larger and larger objects into behaving quantum mechanically. One consequence of this is that, when passing through a double slit, they form an interference pattern that is characteristic of waves.

Up to now this could be achieved with molecules consisting of a few thousand atoms. However, physicists hope one day to be able to observe such quantum effects with properly macroscopic objects. Lukas Novotny, Professor of Photonics, and his collaborators at the Department of Information Technology and Electrical Engineering at ETH Zurich have now made a crucial step in that direction. Their results were recently published in the scientific journal Nature.


Researchers at ETH Zurich have trapped a tiny sphere measuring a hundred nanometres using laser light and slowed down its motion to the lowest quantum mechanical state. Based on this, one can study quantum effects in macroscopic objects and build extremely sensitive sensors.

Continue reading “Nanosphere at the quantum limit” »

Jul 14, 2021

The next generation of information processing is through coherent gate operations

Posted by in categories: computing, engineering, particle physics, quantum physics

Many of us swing through gates every day—points of entry and exit to a space like a garden, park or subway. Electronics have gates too. These control the flow of information from one place to another by means of an electrical signal. Unlike a garden gate, these gates require control of their opening and closing many times faster than the blink of an eye.

Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and the University of Chicago’s Pritzker School of Molecular Engineering have devised a unique means of achieving effective gate operation with a form of processing called electromagnonics. Their pivotal discovery allows real-time control of information transfer between and magnons. And it could result in a new generation of classical electronic and quantum signal devices that can be used in various applications such as signal switching, low-power computing and quantum networking.

Microwave photons are forming the employed in, for example, wireless communications. Magnons are the particle-like representatives of “spin waves.” That is, wave-like disturbances in an ordered array of microscopically aligned spins that occur in certain magnetic materials.

Jul 13, 2021

Calling All Couch Potatoes: This Finger Wrap Can Let You Power Electronics While You Sleep

Posted by in categories: energy, engineering, health, wearables

A new wearable device turns the touch of a finger into a source of power for small electronics and sensors. Engineers at the University of California San Diego developed a thin, flexible strip that can be worn on a fingertip and generate small amounts of electricity when a person’s finger sweats or presses on it.

What’s special about this sweat-fueled device is that it generates power even while the wearer is asleep or sitting still. This is potentially a big deal for the field of wearables because researchers have now figured out how to harness the energy that can be extracted from human sweat even when a person is not moving.

Continue reading “Calling All Couch Potatoes: This Finger Wrap Can Let You Power Electronics While You Sleep” »

Jul 9, 2021

World’s deepest pool with underwater city, caves for exploration opens

Posted by in category: engineering

It makes an Olympic swimming pool look like a puddle.

As if Dubai wasn’t filled with enough record-breaking attractions, the United Arab Emirates metropolis is now home to the world’s deepest pool, complete with an underwater city, caves and more.

“An entire world awaits you at Deep Dive Dubai, the world’s deepest pool,” wrote crown prince of Dubai Sheikh Hamdan bin Mohammed bin Rashid Al Maktoum, on Instagram. He was one of the first to visit the engineering marvel on July 7.

Jul 8, 2021

‘Angel Particle’ found which could lead to 100 MILLION times faster computers

Posted by in categories: computing, engineering, particle physics, quantum physics

Quantum computers could make modern day Macs look like the very first Commodore computer.

Initial tests on Google and NASA’s quantum computing system D-Wave showed that it was a staggering one hundred million times faster than a traditional desktop.

Hartmut Nevan, director of engineering at Google, claimed: “What a D-Wave does in a second would take a conventional computer 10000 years to do.”

Jul 5, 2021

Inside the Impossible Dream of the Nuclear-Powered 1958 Ford Nucleon

Posted by in categories: engineering, nuclear energy, transportation

In 1958, Ford showed the world a car like it had never seen before, one powered by a small nuclear reactor. The Ford Nucleon, as it was christened, was envisioned as a car capable of driving more than 5000 miles between fueling stops, appealing to a postwar fixation with convenience that has dominated American consumerism since. Like some other midcentury nuclear fantasies, though, the Nucleon never came to fruition, in part due to engineering problems we still struggle with to this day.

Before we examine why the Nucleon could never be, let’s get a better grasp of the car itself, starting with its utterly comical dimensions. Ford’s press materials envisaged the Nucleon stretching 200.3 inches long and 77.4 wide, making it as long as the new Ford Maverick compact pickup, but slightly wider. Its roof was said to measure just 41.4 inches high, making it less than an inch taller than the legendarily low-slung Ford GT40.

Jul 4, 2021

Engineering Breakthrough Paves Way for Chip Components That Could Serve As Both RAM and ROM

Posted by in categories: computing, engineering, physics

Year after year, the explosive growth of computing power relies on manufacturers’ ability to fit more and more components into the same amount of space on a silicon chip. That progress, however, is now approaching the limits of the laws of physics, and new materials are being explored as potential replacements for the silicon semiconductors long at the heart of the computer industry.

New materials may also enable entirely new paradigms for individual chip components and their overall design. One long-promised advance is the ferroelectric field-effect transistor, or FE-FET. Such devices could switch states rapidly enough to perform computation, but also be able to hold those states without being powered, enabling them to function as long-term memory storage. Serving double duty as both RAM and ROM, FE-FET devices would make chips more space efficient and powerful.

The hurdle for making practical FE-FET devices has always been in manufacturing; the materials that best exhibit the necessary ferroelectric effect aren’t compatible with techniques for mass-producing silicon components due the high temperature requirements of the ferroelectric materials.