Menu

Blog

Archive for the ‘engineering’ category: Page 229

Oct 19, 2015

3D printing used to make first real handheld railgun, which fires plasma projectiles at 560 mph

Posted by in categories: 3D printing, engineering, military, mobile phones

If you think the image above looks frightening, you’re right. The crazy contraption pictured in the image is the first portable railgun, a futuristic projectile launcher associated most commonly with the military or NASA. The man in the image above isn’t in the military, and he’s not a NASA engineer. Instead, he’s a civilian who used some engineering smarts, some widely available parts and a 3D printer to create a functioning weapon that can fire graphite, aluminum, tungsten and even plasma projectiles at speeds of more than 560 mph.

And then there’s the best part: There are videos of this homemade railgun in action.

Continue reading “3D printing used to make first real handheld railgun, which fires plasma projectiles at 560 mph” »

Oct 17, 2015

Stanford researchers make artificial skin that senses touch

Posted by in categories: cyborgs, engineering, genetics

A team from Stanford University might have made a breakthrough that could change the lives of people with missing limbs. Researchers have developed an artificial substitute for skin that is capable of sensing when it is being touched and sending that data to the nervous system. It’s hoped that technology like this could be used to build futuristic prostheses that could be wired into the nervous systems of amputees. In addition, not only will these people be able to know if they’re touching something, they’ll also know how much pressure is being used.

Put very simply, the skin is comprised of two layers of rubbery plastic skin with a flexible circuit printed on, courtesy of the folks at Xerox Parc. Sandwiched between the two is a run of carbon nanotubes, which conduct electricity when they’re pushed closer together. The harder the compression, the more current passes between them, which is how the skin can understand differences in pressure.

That, however, isn’t enough, since that data would still have to be transmitted somehow into the user’s brain. In the end, the team opted to harness a field of science called optogenetics, which involves genetically-engineering cells so that they react to specific frequencies of light. By creating optogenetic neurons that are capable of sensing light patterns, the team proved that it’s possible to make this technology work in a person.

Read more

Oct 15, 2015

Why An Interplanetary Fuel Stop Makes Sense For Human Missions To Mars

Posted by in categories: energy, engineering, space travel

My take on the MIT study.


Routine human missions to Mars would be much more efficient if they first swung by Earth’s Moon to pick up fuel for the trip, a new MIT strategic engineering study concludes. NASA’s 90’s-era mantra of “Back to the Moon and on to Mars” really does make sense, a new paper published in the Journal of Spacecraft and Rockets notes.

The idea is that a crewed mission to Mars would greatly save on fuel and launch costs if it first made an interplanetary pit stop at a space-based depot to pick up its needed fuel. In this case, such a depot would optimally be placed at the Earth-Moon Lagrange Point 2 (EML2), a point of gravitational equilibrium lying beyond the Moon’s far side.

Continue reading “Why An Interplanetary Fuel Stop Makes Sense For Human Missions To Mars” »

Oct 13, 2015

Embry-Riddle and Honeybee Robotics Receive $750,000 Research Award from NASA to Develop Asteroid Mining Robots

Posted by in categories: engineering, robotics/AI, space

Mars Robot
NASA has announced the continuation of a two-phase $750,000 research award to Embry-Riddle Aeronautical University and project partner Honeybee Robotics to develop a small integrated autonomous robotic spacecraft system to support the exploration and mining of asteroids and other planetary bodies and moons.

Dr. Hever Moncayo and Dr. Richard Prazenica, both Assistant Professors of Aerospace Engineering in the College of Engineering are leading the effort at the Daytona Beach Campus. Also collaborating on this project is Dr. Sergey Drakunov, Professor of Engineering Physics in the Physical Sciences Department and Associate Dean of the College of Arts and Sciences. Dr. Kris Zacny is the team lead for Honeybee Robotics.

The Embry-Riddle team includes Aerospace Engineering master’s degree students Diego Garcia, Chirag Jain, Andres Chavez, Wai Leuk Law, Aerospace Engineering Ph.D. student Andres Perez and Engineering Physics Ph.D. student Samuel Kitchen-McKinley. The researchers are focusing on an innovative concept based on autonomous small free-flyer prospector spacecraft that can leave from, return and recharge from a mothership on the planet’s or asteroid’s surface.

Read more

Oct 13, 2015

Ray Kurzweil’s Wildest Prediction: Nanobots Will Plug Our Brains Into the Web by the 2030s

Posted by in categories: engineering, nanotechnology, neuroscience, Ray Kurzweil

I consider Ray Kurzweil a very close friend and a very smart person. Ray is a brilliant technologist, futurist, and a director of engineering at Google focused on AI and language processing. He has also made more correct (and documented) technology predictions about the future than anyone:

As reported, “of the 147 predictions that Kurzweil has made since the 1990s, fully 115 of them have turned out to be correct, and another 12 have turned out to be “essentially correct” (off by a year or two), giving his predictions a stunning 86% accuracy rate.”

Two weeks ago, Ray and I held an hour-long webinar with my Abundance 360 CEOs about predicting the future. During our session, there was one of Ray’s specific predictions that really blew my mind.

Read more

Oct 13, 2015

Ada Lovelace Day — Today — 13 October 2015

Posted by in categories: engineering, science

ada

“Celebrating the achievements of women in science, technology, engineering and maths”

Read more

Oct 10, 2015

Massachusetts emerges as a robot industry powerhouse

Posted by in categories: engineering, habitats, robotics/AI

Seventeen years ago, Helen Greiner was scrambling to find investors to back her company’s development of a robot that would clean people’s houses. As she made the rounds of venture capitalists, the responses ranged from “You’re not an Internet company” to “You’re too early stage” to “I would do this, but my partners would kill me.”

But Greiner and her partners, Colin Angle and MIT robotics professor Rodney Brooks, persevered, funneling money from their firm’s contract engineering work to fund the robot project. Today, that company, iRobot Corp. of Bedford, is one of the nation’s largest makers of home robots, generating more than $500 million in annual sales from its Roomba floor vacuum and other products, and employing 600 people, including 500 in Massachusetts.

iRobot is an anchor of a burgeoning Massachusetts robotics industry that includes more than 100 companies, employs more than 3,000, and attracts tens, if not hundreds, of millions of dollars of investments. Since 2008, at least 20 robotics startups have launched in Massachusetts. Venture capital funding of the local industry tripled to more than $60 million in 2012, the most recent year available, from less than $20 million in 2008, according to the Massachusetts Technology Leadership Council, a trade group in Burlington.

Read more

Oct 8, 2015

Fusion reactors ‘economically viable’ in a few decades, say experts

Posted by in categories: engineering, nuclear energy

An illustration of a tokamak with plasma (credit: ITER Organization)

Fusion reactors could become an economically viable means of generating electricity within a few decades, replacing conventional nuclear power stations, according to new research at Durham University and Culham Centre for Fusion Energy in Oxfordshire, U.K.

The research, published in the journal Fusion Engineering and Design, builds on earlier findings that a fusion power plant could generate electricity at a price similar to that of a fission plant and identifies new advantages in using new superconductor technology.

Read more

Oct 5, 2015

This Startup Wants To Plant One Billion Trees a Year Using Drones

Posted by in categories: drones, engineering, food, information science, robotics/AI

The future of Eco conservation?


Deforestation downs 10 billion trees around the globe annually. Replanting trees by hand is slow, expensive, and barely puts a dent in reversing the damage. But one startup wants to use drones that can reforest our increasingly tree-strapped Earth, on a big enough scale to replace slow and expensive hired humans.

The small company, called BioCarbon Engineering, says unmanned aerial vehicles are a great way of covering ravaged woodlands with seedlings that can repopulate the area’s tree population. Around the world, forests and jungles are still being leveled due to lumber overproduction, strip surface mining, urban expansion, and land use for agriculture.

Continue reading “This Startup Wants To Plant One Billion Trees a Year Using Drones” »

Oct 3, 2015

Polyera is a flexible electronics company

Posted by in categories: electronics, engineering

Founded in 2005, Polyera has developed deep and unique expertise spanning science, engineering, and design focused on flexible electronics.

Read more