Menu

Blog

Archive for the ‘engineering’ category: Page 6

Dec 8, 2024

Colombia’s First Quantum Computer: Advancing Education, Research, and Technological Innovation

Posted by in categories: computing, education, engineering, internet, quantum physics

PRESS RELEASE — Thirty years ago, the University of the Andes made the first internet connection in Colombia, and on Tuesday, December 3, the country’s first quantum computer will be unveiled. This acquisition marks a turning point in education and technological research, fostering interdisciplinary collaboration and enhancing ongoing efforts by researchers at the University of the Andes and other institutions.

The University’s Faculties of Science and Engineering announced the arrival of the device, which will enable students and professors to explore fundamental aspects of quantum computing. This emerging technology seeks to solve problems and process information differently by leveraging the laws of quantum physics.

Professor Julián Rincón, a theoretical physicist, explains that this quantum computer employs a technique known as Nuclear Magnetic Resonance and operates at room temperature. This makes it particularly suitable for educational purposes, as it is easy to assemble and provides a straightforward way to test fundamental concepts. “This isn’t just a faster conventional computer; it’s a completely new way of processing information, based on the laws of quantum physics,” he clarifies.

Dec 7, 2024

Dodge maker developing lithium-sulfur EV batteries to boost range

Posted by in categories: energy, engineering, sustainability, transportation

Batteries made from waste and methane offer lower CO2 emissions than current technologies.


It’s also being claimed that the technology has the potential to improve fast-charging speed by up to 50%, making EV ownership even more convenient. Lithium-sulfur batteries are expected to cost less than half the price per kWh of current lithium-ion batteries, according to Stellantis.

The batteries will be produced using waste materials and methane, with significantly lower CO2 emissions than any existing battery technology. Zeta Energy battery technology is intended to be manufacturable within existing gigafactory technology and would leverage a short, entirely domestic supply chain in Europe or North America, according to a press release.

Continue reading “Dodge maker developing lithium-sulfur EV batteries to boost range” »

Dec 6, 2024

Scientists reveal superconductivity secrets of an iron-based material

Posted by in categories: engineering, particle physics, transportation

Scientists at the University of California, Irvine have uncovered the atomic-scale mechanics that enhance superconductivity in an iron-based material, a finding published recently in Nature.

Using advanced spectroscopy instruments housed in the UC Irvine Materials Research Institute, the researchers were able to image atom vibrations and thereby observe new phonons—quasiparticles that carry thermal energy—at the interface of an iron selenide (FeSe) ultrathin film layered on a (STO) substrate.

“Primarily emerging from the out-of-plane vibrations of oxygen atoms at the interface and in apical oxygens in STO, these phonons couple with electrons due to the spatial overlap of electron and phonon wave functions at the interface,” said lead author Xiaoqing Pan, UC Irvine Distinguished Professor of materials science and engineering, Henry Samueli Endowed Chair in Engineering and IMRI director.

Dec 6, 2024

Silver nanoparticles trapped within a polymer matrix allow for precise color control in anti-counterfeiting technology

Posted by in categories: chemistry, engineering, nanotechnology, particle physics

In a significant advancement in the field of anti-counterfeiting technology, Professor Jiseok Lee and his research team in the School of Energy and Chemical Engineering at UNIST have developed a new hidden anti-counterfeiting technology, harnessing the unique properties of silver nanoparticles (AgNPs). The results are published in Advanced Materials.

“The technology we have developed holds significant promise in preventing the counterfeiting of valuable artworks and defense materials, particularly in scenarios where authenticity must be verified against potential piracy,” Professor Lee explained.

The team leveraged the inherent disadvantage of AgNPs, which tend to discolor upon exposure to UV light, to create a controlled color development process. By trapping silver nanoparticles within a , researchers can manipulate and, consequently, the color emitted under UV light. Larger polymer nets yield silver nanoparticles that appear yellow, while smaller nets produce a red hue, allowing for precise control of the resultant colors based on ingredient combinations.

Dec 3, 2024

Study provides experimental evidence of high harmonic generation producing quantum light

Posted by in categories: engineering, particle physics, quantum physics

High harmonic generation (HHG) is a highly non-linear phenomenon where a system (for example, an atom) absorbs many photons of a laser and emits photons of much higher energy, whose frequency is a harmonic (that is, a multiple) of the incoming laser’s frequency. Historically, the theoretical description of this process was addressed from a semi-classical perspective, which treated matter (the electrons of the atoms) quantum-mechanically, but the incoming light classically. According to this approach, the emitted photons should also behave classically.

Despite this evident theoretical mismatch, the description was sufficient to carry out most of the experiments, and there was no apparent need to change the framework. Only in the last few years has the scientific community begun to explore whether the emitted light could actually exhibit a quantum behavior, which the semi-classical theory might have overlooked. Several theoretical groups, including the Quantum Optics Theory group at ICFO, have already shown that, under a full quantum description, the HHG process emits light with quantum features.

However, experimental validation of such predictions remained elusive until, recently, a team led by the Laboratoire d’Optique Appliquée (CNRS), in collaboration with ICREA Professor at ICFO Jens Biegert and other multiple institutions (Institut für Quantenoptik—Leibniz Universität Hannover, Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Friedrich-Schiller-University Jena), demonstrated the quantum optical properties of high-harmonic generation in semiconductors. The results, appearing in PRX Quantum, align with the previous theoretical predictions about HHG.

Dec 2, 2024

Artificial photosynthesis learned from nature: New solar hydrogen production technology developed

Posted by in categories: engineering, nanotechnology, solar power, sustainability

Researchers have successfully developed a supramolecular fluorophore nanocomposite fabrication technology using nanomaterials and constructed a sustainable solar organic biohydrogen production system.

The research team used the good nanosurface adsorption properties of tannic acid-based metal-polyphenol polymers to control the and optical properties of fluorescent dyes while also identifying the photoexcitation and electron transfer mechanisms. Based on these findings, he implemented a solar-based biohydrogen production system using bacteria with hydrogenase enzymes.

The findings are published in the journal Angewandte Chemie International Edition. The joint research was led by Professor Hyojung Cha at the Department of Hydrogen and Renewable Energy, Kyungpook National University and Professor Chiyoung Park at the Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science & Technology.

Dec 2, 2024

Higher Order Van Hove Singularities and Precision Engineering Propel Quantum Technology Forward

Posted by in categories: engineering, quantum physics

A recent study identifies higher-order Van Hove singularities as features that amplify electron interactions, relevant for quantum devices.

Dec 1, 2024

Strain engineering approach enhances performance of 2D semiconductor-based transistors

Posted by in categories: computing, engineering

The manipulation of mechanical strain in materials, also known as strain engineering, has allowed engineers to advance electronics over the past decades, for instance enhancing the mobility of charge carriers in devices. Over the past few years, some studies have tried to devise effective strategies to manipulate strain in two-dimensional (2D) semiconductors that are compatible with existing industrial processes.

Researchers at Stanford University recently introduced a CMOS-compatible approach to engineer the (i.e., stretchiness) in monolayer semiconductor transistors.

This approach, outlined in a paper published in Nature Electronics, relies on the use of silicon nitride capping layers that can impart strain on monolayer molybdenum disulfide (MoS2) transistors integrated on silicon substrates.

Nov 29, 2024

Tiny rotating particles create vorticity in viscous fluids, yielding fascinating new behaviors

Posted by in categories: engineering, information science, mathematics, particle physics

Vorticity, a measure of the local rotation or swirling motion in a fluid, has long been studied by physicists and mathematicians. The dynamics of vorticity is governed by the famed Navier-Stokes equations, which tell us that vorticity is produced by the passage of fluid past walls. Moreover, due to their internal resistance to being sheared, viscous fluids will diffuse the vorticity within them and so any persistent swirling motions will require a constant resupply of vorticity.

Physicists at the University of Chicago and applied mathematicians at the Flatiron Institute recently carried out a study exploring the behavior of viscous fluids in which tiny rotating particles were suspended, acting as local, mobile sources of vorticity. Their paper, published in Nature Physics, outlines fluid behaviors that were never observed before, characterized by self-propulsion, flocking and the emergence of chiral active phases.

“This experiment was a confluence of three curiosities,” William T.M. Irvine, a corresponding author of the paper, told Phys.org. “We had been studying and engineering parity-breaking meta-fluids with fundamentally new properties in 2D and were interested to see how a three-dimensional analog would behave.

Nov 28, 2024

Smart Materials and Nanotechnology Engineering conf. kicks off

Posted by in categories: engineering, nanotechnology

Dr Mehdi Ghommem said that the AUS was happy to host and organise the eighth edition of the International Conference on Smart Materials and Nanotechnology, and to host more than 100 participants from 15 different countries.

Ghommem added that the social programme of the conference included plenary lectures, keynote lectures, parallel technical sessions with more than 70 presentations.

Continue reading “Smart Materials and Nanotechnology Engineering conf. kicks off” »

Page 6 of 265First345678910Last