Menu

Blog

Archive for the ‘evolution’ category: Page 4

Nov 23, 2024

Overthinking what you said? It’s your ‘lizard brain’ talking to newer, advanced parts of your brain

Posted by in categories: biotech/medical, evolution, humor, neuroscience

We’ve all been there. Moments after leaving a party, your brain is suddenly filled with intrusive thoughts about what others were thinking. “Did they think I talked too much?” “Did my joke offend them?” “Were they having a good time?”

In a new Northwestern Medicine study, scientists sought to better understand how humans evolved to become so skilled at thinking about what’s happening in other peoples’ minds. The findings could have implications for one day treating such as anxiety and depression.

Continue reading “Overthinking what you said? It’s your ‘lizard brain’ talking to newer, advanced parts of your brain” »

Nov 22, 2024

Unitary collapse of Schrodinger’s cat state

Posted by in categories: evolution, quantum physics

Unitary collapse of Schrödinger’s cat state https://journals.aps.org/pra/abstract/10.1103/PhysRevA.110.L030202

Schrödinger’s cat, that iconic thought experiment where a cat in a box is both alive and dead until someone peeks.


The authors study a system composed of a single qubit coupled to a soft-mode quantum oscillator. They show that spontaneous unitary evolution of this system create a Schr\ odinger-cat-like state of the oscillator, which is subsequently lost in a sudden process strongly resembling the measurement-induced collapse of wave function.

Nov 22, 2024

Gene regulation study reports surprising results: Extensive regions of DNA belong to multiple gene switches

Posted by in categories: biotech/medical, evolution

Some sequences in the genome cause genes to be switched on or off. Until now, each of these gene switches, or so-called enhancers, was thought to have its own place on the DNA. Different enhancers are therefore separated from each other, even if they control the same gene, and switch it on in different parts of the body.

A recent study from the University of Bonn and the LMU Munich challenges this idea. The findings are also important because gene switches are thought to play a central role in evolution. The study has been published in the journal Science Advances.

The blueprint of plant and animal forms is encoded in their DNA. But only a small part of the genome—about two percent in mammals—contains genes, the instructions for making proteins. The rest largely controls when and where these genes are active: how many of their transcripts are produced, and thus how many proteins are made from these transcripts.

Nov 21, 2024

‘Mind-blowing’ dark energy instrument results show Einstein was right about gravity — again

Posted by in categories: cosmology, evolution

Scientists have now performed one such large-scale test by using DESI. They observed almost 6 million galaxies and quasars, which are bright hearts of galaxies powered by feeding supermassive black holes. Perhaps unsurprisingly, this test, which has traced the evolution of the universe since it was around 3 billion years old, has once again shown general relativity to be the right “recipe” for gravity.

“General relativity has been very well tested at the scale of solar systems, but we also needed to test that our assumption works at much larger scales,” study co-leader and the French National Center for Scientific Research (CNRS) cosmologist Pauline Zarrouk said in a statement. “Studying the rate at which galaxies formed lets us directly test our theories and, so far, we’re lining up with what general relativity predicts at cosmological scales.”

Nov 20, 2024

Scientists use DNA from 422-million-year-old cells to create a mouse

Posted by in categories: biotech/medical, evolution, genetics, life extension

Choanoflagellates, animals’ closest relatives, have pluripotency genes, reshaping views on their evolution.


The research highlights how evolution repurposes existing genetic tools, turning them into versatile drivers of innovation. This adaptability underscores how foundational processes in unicellular organisms laid the groundwork for the development of complex life forms.

Continue reading “Scientists use DNA from 422-million-year-old cells to create a mouse” »

Nov 20, 2024

Brains Not Required: Cells Exhibit Surprising Learning Abilities

Posted by in categories: biotech/medical, evolution, neuroscience

A new study demonstrates that even simple single-cell organisms, such as ciliates and amoebae, exhibit habituation, a basic form of learning previously thought to be exclusive to more complex beings.

This revelation not only changes our understanding of cellular capabilities but also opens up possibilities for applications in cancer immunology, suggesting that our immune cells might be reprogrammed to better recognize and attack cancer cells.

A dog learns to sit on command. A person tunes out the steady hum of a washing machine while engrossed in a book. The ability to learn and adapt is a cornerstone of evolution and survival.

Nov 19, 2024

Caltech Astrophysicists Flip Black Hole Theories With Stunning New Simulations

Posted by in categories: cosmology, evolution, physics

Astounding simulation shows magnetic fields create fluffy, not flat, accretion disks around supermassive black holes, altering our understanding of black hole dynamics.

A team of astrophysicists from Caltech has achieved a groundbreaking milestone by simulating the journey of primordial gas from the early universe to its incorporation into a disk of material feeding a supermassive black hole. This innovative simulation challenges theories about these disks that have persisted since the 1970s and opens new doors for understanding the growth and evolution of black holes and galaxies.

Continue reading “Caltech Astrophysicists Flip Black Hole Theories With Stunning New Simulations” »

Nov 19, 2024

Where Does the Periodic Table End? Exploring the Mysteries of Superheavy Elements

Posted by in categories: chemistry, evolution

Fermium studies indicate nuclear shell effects diminish as nuclear mass increases, emphasizing macroscopic influences in superheavy elements.

Where does the periodic table of chemical elements end and which processes lead to the existence of heavy elements? An international research team has conducted experiments at the GSI/FAIR accelerator facility and at Johannes Gutenberg University Mainz to investigate these questions.

Their research, published in the journal Nature, provides new insights into the structure of atomic nuclei of fermium (element 100) with different numbers of neutrons. Using forefront laser spectroscopy techniques, the team traced the evolution of the nuclear charge radius and found a steady increase as neutrons were added to the nuclei. This indicates that localized nuclear shell effects have a reduced influence on the nuclear charge radius in these heavy nuclei.

Nov 17, 2024

Q&A: Holobiont biology, a new concept for exploring how microbiome shapes evolution of visible life

Posted by in categories: biotech/medical, evolution, food, genetics, health

Microorganisms—bacteria, viruses and other tiny life forms—may drive biological variation in visible life as much, if not more, than genetic mutations, creating new lineages and even new species of animals and plants, according to Seth Bordenstein, director of Penn State’s One Health Microbiome Center, professor of biology and entomology, and the Dorothy Foehr Huck and J. Lloyd Huck Endowed Chair in Microbiome Sciences.

Bordenstein and 21 other scientists from around the world published a paper in Science, summarizing research that they said drives a deeper understanding of biological variation by uniting life’s seen and unseen realms.

Continue reading “Q&A: Holobiont biology, a new concept for exploring how microbiome shapes evolution of visible life” »

Nov 12, 2024

Unveiling the Evolution of Globular Clusters: A 3D View of Stellar Kinematics

Posted by in categories: evolution, space

In this work, we analyzed in detail the motion of thousands of stars within each cluster,” said Alessandro Della Croce. “It quickly became clear that stars belonging to different populations have distinct kinematic properties…


How do stars form and evolve inside globular clusters? This is what a recent study published in Astronomy & Astrophysics hopes to address as an international team of researchers conducted a groundbreaking examination of star populations that reside within globular clusters, which consists of a densely packed group of stars pulled together by gravity, with the densest part in the center of the cluster. This study holds the potential to help researchers better understand the formation and evolution of stars and star populations in these unique environments throughout the cosmos.

For the study, the researchers conducted a 3D kinematic analysis of stars and star populations within 16 Galactic globular clusters (GCs) to determine the movements of stars and star populations within these clusters and how this causes the cluster to evolve over time. Since astronomers hypothesize that globular clusters are almost as old as the universe itself, they offer a unique opportunity to study some of the oldest stars in the universe, as well. In the end, the researchers found the rotation and orbital behaviors of stars were based on their light properties.

Continue reading “Unveiling the Evolution of Globular Clusters: A 3D View of Stellar Kinematics” »

Page 4 of 15212345678Last