Menu

Blog

Archive for the ‘genetics’ category: Page 154

Feb 7, 2023

Potential therapeutic target for schizophrenia identified

Posted by in categories: biotech/medical, genetics, neuroscience

Targeting calcium signaling in neurons represents a promising therapeutic approach for treating a rare form of schizophrenia, according to a Northwestern Medicine study published in Biological Psychiatry.

“This is the first time that human are made and characterized from with the 16p11.2 duplication, one of the most prominent genetic risk factors in schizophrenia, and the first time that signaling is found as a central abnormality in schizophrenia neurons,” said Peter Penzes, Ph.D., the Ruth and Evelyn Dunbar Professor of Psychiatry and Behavioral Sciences and senior author of the study.

Schizophrenia is characterized by auditory and visual hallucinations, delusions, and trouble with forming and sorting thoughts, which severely impacts productivity and overall quality of life. The disease, which affects roughly one percent of the , has strong genetic associations, however the exact genes involved are unknown.

Feb 7, 2023

Dr Nir Barzilai, MD — Advancing Geroscience & Gerotherapeutics — Albert Einstein College of Medicine

Posted by in categories: biotech/medical, genetics, life extension, neuroscience

Advancing Geroscience & Gerotherapeutics — Dr. Nir Barzilai, MD, Albert Einstein College of Medicine.


Dr. Nir Barzilai, MD (https://www.einsteinmed.edu/faculty/484/nir-barzilai/) is the Director of the Institute for Aging Research at the Albert Einstein College of Medicine and the Director of the Paul F. Glenn Center for the Biology of Human Aging Research and of the National Institutes of Health’s (NIH) Nathan Shock Centers of Excellence in the Basic Biology of Aging. He is the Ingeborg and Ira Leon Rennert Chair of Aging Research, professor in the Departments of Medicine and Genetics, and member of the Diabetes Research Center and of the Divisions of Endocrinology & Diabetes and Geriatrics.

Continue reading “Dr Nir Barzilai, MD — Advancing Geroscience & Gerotherapeutics — Albert Einstein College of Medicine” »

Feb 5, 2023

Auburn University researchers combining alligator, catfish DNA: ‘Who would have thought to do this?’

Posted by in categories: biotech/medical, food, genetics

It sounds like the start of a Southern gothic horror thriller. Auburn University scientists have been putting alligator DNA in catfish. It’s delicious, but with less chance for infection. Don’t worry, it won’t bite back. MIT Technology Review recently highlighted the work of Rex Dunham, Baofeng Su and their colleagues at Auburn University, who have used genetic modification to reduce problems of disease in catfish farming.

Feb 5, 2023

Engineering Cyborg Bacteria Through Intracellular Hydrogelation

Posted by in categories: bioengineering, biotech/medical, cyborgs, genetics, robotics/AI

Synthetic biology has made major strides towards the holy grail of fully programmable bio-micromachines capable of sensing and responding to defined stimuli regardless of their environmental context. A common type of bio-micromachines is created by genetically modifying living cells.[ 1 ] Living cells possess the unique advantage of being highly adaptable and versatile.[ 2 ] To date, living cells have been successfully repurposed for a wide variety of applications, including living therapeutics,[ 3 ] bioremediation,[ 4 ] and drug and gene delivery.[ 5, 6 ] However, the resulting synthetic living cells are challenging to control due to their continuous adaption and evolving cellular context. Application of these autonomously replicating organisms often requires tailored biocontainment strategies,[ 7-9 ] which can raise logistical hurdles and safety concerns.

In contrast, nonliving synthetic cells, notably artificial cells,[ 10, 11 ] can be created using synthetic materials, such as polymers or phospholipids. Meticulous engineering of materials enables defined partitioning of bioactive agents, and the resulting biomimetic systems possess advantages including predictable functions, tolerance to certain environmental stressors, and ease of engineering.[ 12, 13 ] Nonliving cell-mimetic systems have been employed to deliver anticancer drugs,[ 14 ] promote antitumor immune responses,[ 15 ] communicate with other cells,[ 16, 17 ] mimic immune cells,[ 18, 19 ] and perform photosynthesis.

Feb 5, 2023

Quantifying Biological Age: Blood Test #1 in 2023

Posted by in categories: biotech/medical, genetics, life extension

Join us on Patreon!
https://www.patreon.com/MichaelLustgartenPhD

Green Tea Discount Link.
https://www.ochaandco.com/?ref=conqueraging.

Continue reading “Quantifying Biological Age: Blood Test #1 in 2023” »

Feb 4, 2023

Exploring the Inner Workings of Human Cells — Database of 200,000 Cell Images Yields New Mathematical Framework

Posted by in categories: biotech/medical, genetics, health, mathematics

Working with hundreds of thousands of high-resolution images, researchers from the Allen Institute for Cell Science, a division of the Allen Institute, put numbers on the internal organization of human cells — a biological concept that has proven incredibly difficult to quantify until now.

The scientists also documented the diverse cell shapes of genetically identical cells grown under similar conditions in their work. Their findings were recently published in the journal Nature.

“The way cells are organized tells us something about their behavior and identity,” said Susanne Rafelski, Ph.D., Deputy Director of the Allen Institute for Cell Science, who led the study along with Senior Scientist Matheus Viana, Ph.D. “What’s been missing from the field, as we all try to understand how cells change in health and disease, is a rigorous way to deal with this kind of organization. We haven’t yet tapped into that information.”

Feb 4, 2023

Gene editing company plans to resurrect the dodo

Posted by in categories: bioengineering, biotech/medical, genetics

Colossal Biosciences, a genetic engineering company focused on de-extincting past species, has announced $150 million in Series B funding, which it plans to use for bringing back the iconic dodo.

The resurrection of several extinct species is predicted to occur within the next five years. One company aiming to make that a reality is Texas-based startup Colossal Biosciences, founded in 2021 by some of the world’s leading experts in genomics. In May 2022, it appeared in the World Economic Forum’s list of Technology Pioneers and it won Genomics Innovation of the Year at the BioTech Breakthrough Awards.

Feb 3, 2023

Scientists Use Exotic DNA To Help Create “Climate-Proof” Crops

Posted by in categories: biotech/medical, food, genetics

The incorporation of exotic DNA

DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).

Feb 2, 2023

Genetic engineering sheds light on ancient evolutionary questions

Posted by in categories: bioengineering, climatology, genetics, sustainability

Cyanobacteria are single-celled organisms that derive energy from light, using photosynthesis to convert atmospheric carbon dioxide (CO2) and liquid water (H2O) into breathable oxygen and the carbon-based molecules like proteins that make up their cells. Cyanobacteria were the first organisms to perform photosynthesis in the history of Earth, and were responsible for flooding the early Earth with oxygen, thus significantly influencing how life evolved.

Geological measurements suggest that the atmosphere of the early Earth—over three billion years ago—was likely rich in CO2, far higher than current levels caused by , meaning that ancient had plenty to “eat.”

But over Earth’s multi-billion-year history, atmospheric CO2 concentrations have decreased, and so to survive, these bacteria needed to evolve new strategies to extract CO2. Modern cyanobacteria thus look quite different from their ancient ancestors, and possess a complex, fragile set of structures called a CO2-concentrating mechanism (CCM) to compensate for lower concentrations of CO2.

Feb 2, 2023

AAV Manufacturing Sees Big Opportunities in Synthetic Biology

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics

My recently published perspective paper has been featured by GEN Genetic Engineering & Biotechnology News!

#biotechnology #genetherapy #syntheticbiology


Synthetic biology has the potential to upend existing paradigms of adeno-associated virus (AAV) production, helping to reduce the high costs of gene therapy and thus make it more accessible, according to a recent paper.

Continue reading “AAV Manufacturing Sees Big Opportunities in Synthetic Biology” »