Menu

Blog

Archive for the ‘genetics’ category: Page 203

Mar 1, 2022

UC Berkeley loses CRISPR patent case, invalidating patent rights it granted gene-editing companies developing human therapies

Posted by in categories: biotech/medical, genetics, law

Ending the latest chapter in a years-long legal battle over who invented CRISPR, the U.S. Patent and Trademark Office ruled on Monday that the revolutionary genome editing technology belongs to the Broad Institute of Harvard and MIT.

The decision is a blow to the University of California and biotech companies that had licensed the technology from the university for use in developing treatments, including Intellia Therapeutics and CRISPR Therapeutics. They will now have to negotiate with the Broad Institute for the right to use CRISPR for human therapies.

Feb 28, 2022

Breakthrough gene-editing technology belongs to Harvard, MIT —U.S. tribunal

Posted by in categories: biotech/medical, genetics

Feb 28 (Reuters) — A U.S. tribunal overseeing patent disputes ruled on Monday that patents on the breakthrough gene-editing technology known as CRISPR belong to Harvard University and the Massachusetts Institute of Technology.

The U.S. Patent and Trademark Office’s decision is a defeat for the University of California, Berkeley; the University of Vienna and Nobel Prize-winning researcher Emmanuelle Charpentier.

Harvard’s and MIT’s Broad Institute, which obtained the first CRISPR patent in 2014 and later obtained related patents, said the decision confirmed its patents were properly issued.

Feb 27, 2022

Biologists successfully hatched gene-edited ticks for the first time

Posted by in categories: biotech/medical, genetics

A five-year experiment to genetically modify deer ticks, or black-legged ticks, using CRISPR/Cas9 ends in success, marking a first in biology.

Feb 25, 2022

Clinical trial begins for promising HIV cure developed by Temple scientists

Posted by in categories: biotech/medical, genetics

© 2022 WWB Holdings, LLC. All rights reserved.

The treatment, which is based on breakthrough CRISPR technology, uses gene-editing to to eradicate the genetic material of HIV from infected cells.

Feb 25, 2022

Depression and Alzheimer’s Disease Share Common Genetic Roots

Posted by in categories: biotech/medical, genetics, neuroscience

Epidemiological data have long linked depression with Alzheimer’s disease (AD), a neurodegenerative disease characterized by progressive dementia that affects nearly 6 million Americans. Now, a new study identifies common genetic factors in both depression and AD. Importantly, the researchers found that depression played a causal role in AD development, and those with worse depression experienced a faster decline in memory. The study appears in Biological Psychiatry, published by Elsevier.

Co-senior author Aliza Wingo, MD, of Emory University School of Medicine, Atlanta, USA, said of the work, “It raises the possibility that there are genes that contribute to both illnesses. While the shared genetic basis is small, the findings suggest a potential causal role of depression on dementia.”

The authors performed a genome-wide association study (GWAS), a technique that scans the entire genome for areas of commonality associated with particular conditions. The GWAS identified 28 brain proteins and 75 transcripts – the messages that encode proteins – that were associated with depression. Among those, 46 transcripts and 7 proteins were also associated with symptoms of AD. The data suggest a shared genetic basis for the two diseases, which may drive the increased risk for AD associated with depression.

Feb 25, 2022

“A Genealogy for All of Humanity” — University of Oxford Researchers Create Largest Ever Human Family Tree

Posted by in categories: genetics, information science, mapping

Researchers from the University of Oxford’s Big Data Institute have taken a major step towards mapping the entirety of genetic relationships among humans: a single genealogy that traces the ancestry of all of us. The study has been published today in Science.

Feb 25, 2022

Lab-Grown Pancreas Reverse Diabetes In Mice

Posted by in categories: biotech/medical, genetics

Circa 2017


AsianScientist (Feb. 8, 2017) – Mouse pancreases grown in rats generate functional, insulin-producing cells that can reverse diabetes when transplanted into mice with the disease, according to researchers at the Stanford University School of Medicine and the Institute of Medical Science at the University of Tokyo.

These findings, published in Nature, suggest that a similar technique could one day be used to generate matched, transplantable human organs in large animals like pigs or sheep.

Continue reading “Lab-Grown Pancreas Reverse Diabetes In Mice” »

Feb 23, 2022

Reflections on the ethics of genetic enhancement

Posted by in categories: biotech/medical, education, ethics, genetics, policy

Public policy includes efforts by governmental as well as nongovernmental agencies (other than professional associations) to manage genetic enhancement. For example, the International Olympic Committee has a policy on performance-enhancing drugs in sport. In the United States, the Food and Drug Administration classified synthetic anabolic steroids as a restricted class of drugs, making it more difficult to get access to them. Such measures will not always be successful. Epoetin alfa (EPO) is a useful medication for the many people who suffer from chronic anemia, including people who must undergo regular renal dialysis. As a consequence, it is in very wide supply for legitimate therapeutic purposes, unlike the synthetic anabolic steroids. Imposing strict limitations on access to EPO would create an enormous inconvenience for the large number of people who benefit from the drug. The fact that some athletes are able to get their hands on EPO is an unintended consequence of having the drug widely available for legitimate therapeutic uses. The appropriate public policy will not be the same, necessarily, for every drug.

By “personal policy” we mean the moral understandings and social practices of individuals, parents, and families, including those moral convictions that would cause them to refrain from unwise or unfair use of genetic enhancement technologies. The Worth of a Child, for example, focuses on ethical issues involving children and parents.11 How does one engage that sort of personal policy response? The means we have are limited but powerful: education, public dialogue, and the encouragement of ethical reflection.

In conclusion, there are four points worth reiterating. First, as we think about genetic enhancement, we should use a broad definition of genetic-enhancement technologies, not merely gene manipulation, but indirect genetic technologies, such as biosynthetic drugs. Second, we should try to anticipate the enhancement temptations of new therapies. Such anticipation may help us in shaping the marketing, availability, or other aspects of those technologies. Third, we should promote the adoption of appropriate public and professional policies. Finally, we should provide public education and dialogue to encourage personal ethical reflection on the appropriate uses and limits of genetic-enhancement technologies.

Feb 22, 2022

Better understanding communication between neurons in the brain

Posted by in categories: genetics, information science, neuroscience

In the field of optogenetics, scientists investigate the activity of neurons in the brain using light. A team led by Prof. Dr. Ilka Diester and Dr. David Eriksson from the Optophysiology Laboratory at the University of Freiburg has developed a new method to simultaneously conduct laminar recordings, multifiber stimulations, 3D optogenetic stimulation, connectivity inference, and behavioral quantification on brains. Their results are presented in Nature Communications. “Our work paves the way for large-scale photo-recording and controlled interrogation of fast neural communication in any combination of brain areas,” Diester explains. “This can help us unravel the rapid and multilayered dialogs between neurons that maintain brain function.”

The research group, in collaboration with Dr. Patrick Ruther of the Department of Microsystems Engineering (IMTEK) at the University of Freiburg, is developing a new method for the controlled interrogation and recording of neuronal activity in the . To do this, the team is taking advantage of thin, cell-sized optical fibers for minimally invasive optogenetic implantation. “We combine side-emitting fibers with silicon probes to achieve high-quality recordings and ultrafast, multichannel optogenetic control.”

They call the system Fused Fiber Light Emission and eXtracellular Recording, or FFLEXR. In addition to optical fibers that can be attached to any silicon probe, the uses linear depth-resolved , a lightweight fiber matrix connector, a flexible multifiber ribbon cable, an optical commutator for efficient multichannel stimulation, a general-purpose patch cable, and an algorithm to manage the photovoltaic response.

Feb 21, 2022

“Self-Destruct” Switches Engineered Into GM Microbes

Posted by in categories: biological, chemistry, engineering, genetics, space

Tae Seok Moon, associate professor of energy, environmental and chemical engineering at the McKelvey School of Engineering at Washington University in St. Louis, has taken a big step forward in his quest to design a modular, genetically engineered kill switch that integrates into any genetically engineered microbe, causing it to self-destruct under certain defined conditions.

His research was published Feb. 3 in the journal Nature Communications.

Moon’s lab understands microbes in a way that only engineers would, as systems made up of sensors, circuits and actuators. These are the components that allow microbes to sense the world around them, interpret it and then act on the interpretation.