Menu

Blog

Archive for the ‘genetics’ category: Page 264

Jun 9, 2021

Age Resetting Genes Going to Human Studies in Two Years

Posted by in categories: biotech/medical, chemistry, genetics, neuroscience

David Sinclair is a geneticist at Harvard and author of Lifespan.

Nature – Reversal of biological clock restores vision in old mice

Continue reading “Age Resetting Genes Going to Human Studies in Two Years” »

Jun 8, 2021

Study links blood cell mutations to increased infection risk with age

Posted by in categories: biotech/medical, genetics

New research suggests age-related changes in blood cell chromosomes are a marker of impaired immunity.

A person’s risk of severe infections increases dramatically as they grow older, but scientists do not yet understand how age might be linked to weakened immunity. Now, research shows that certain age-related changes in are associated with a higher risk of a range of severe infections including severe COVID-19, other pneumonias, and sepsis.

Researchers analyzed genetic and clinical data from nearly 800000 patients from around the world. They discovered that people with a specific type of acquired rearrangement in the chromosomes of their cells, called mosaic chromosomal alterations (mCAs), were nearly three times more likely to develop sepsis and two times more likely to get pneumonia than those without mCAs. These genetic changes accumulate in blood cells with age and often indicate a common condition in the elderly called clonal hematopoiesis.

Jun 8, 2021

Trials Begin For Lozenge That Rebuilds Tooth Enamel

Posted by in categories: biotech/medical, genetics

~Fun Sunday Links~

*See comments section*

~~~

Continue reading “Trials Begin For Lozenge That Rebuilds Tooth Enamel” »

Jun 6, 2021

A New Type Of COVID-19 Vaccine Could Debut Soon

Posted by in categories: biotech/medical, genetics

Instead of putting genetic instructions into people whose cells then make a viral protein, the vaccines from Novavax, Medicago and Sanofi carry a spike protein payload.

Jun 6, 2021

Genes in the Dead Zone

Posted by in categories: biotech/medical, genetics, internet, life extension

Don’t worry you haven’t stumbled onto that strange part of the internet again, but it is true that we never truly did sequence the entire Human genome. For you see what was completed in June 2000 was the so called ‘first draft’, which constituted roughly 92% of genome. The problem with the remaining 8% was that these were genomic ‘dead zones’, made up of vast regions of repeating patterns of nucleotide bases that made studying these regions of the genome effectively impossible with the technology that was available at the time.

However, recent breakthroughs in high throughput nanopore sequencing technology have allowed for these so call dead zones to be sequences. Analysing these zone revealed 80 different genes which had been missed during the initial draft of the Human genome. Admittedly this is not many considering that the other 92% of the genome contain 19889 genes, but it may turn out that these genes hold great significance, as there are still many biological pathways which we do not fully understand. It is likely that many of these genes will soon be linked with what are known as orphan enzymes, which are proteins that are created from an unidentified gene, which is turn opens up the door to studying these enzymes more closely via controlling their expression.

Continue reading “Genes in the Dead Zone” »

Jun 6, 2021

SIRT6 Positively Affects The Hallmarks Of Aging And Extends Lifespan

Posted by in categories: biotech/medical, food, genetics, life extension

Papers referenced in the video:

Sirtuins, Healthspan, and Longevity in Mammals.
https://www.sciencedirect.com/science/article/pii/B9780124115965000034

Continue reading “SIRT6 Positively Affects The Hallmarks Of Aging And Extends Lifespan” »

Jun 5, 2021

A Great Deal of Work Lies Ahead in the Development of In Vivo Reprogramming as a Therapy

Posted by in categories: bioengineering, biotech/medical, business, genetics, life extension, nuclear energy

The latest from Calico. A bit technical.


Reprogramming of ordinary somatic cells into induced pluripotent stem cells (iPSCs) was initially thought to be a way to obtain all of the patient matched cells needed for tissue engineering or cell therapies. A great deal of work has gone towards realizing that goal over the past fifteen years or so; the research community isn’t there yet, but meaningful progress has taken place. Of late, another line of work has emerged, in that it might be possible to use partial reprogramming as a basis for therapy, delivering reprogramming factors into animals and humans in order to improve tissue function, without turning large numbers of somatic cells into iPSCs and thus risking cancer or loss of tissue structure and function.

Reprogramming triggers some of the same mechanisms of rejuvenation that operate in the developing embryo, removing epigenetic marks characteristic of aged tissues, and restoring youthful mitochondrial function. It cannot do much for forms of damage such as mutations to nuclear DNA or buildup of resilient metabolic waste, but the present feeling is there is nonetheless enough of a potential benefit to make it worth developing this approach to treatments for aging. Some groups have shown that partial reprogramming — via transient expression of reprogramming factors — can reverse functional losses in cells from aged tissues without making those cells lose their differentiated type. But this is a complicated business. Tissues are made up of many cell types, all of which can need subtly different approaches to safe reprogramming.

Today’s open access preprint is illustrative of the amount of work that lies ahead when it comes to the exploration of in vivo reprogramming. Different cell types behave quite differently, will require different recipes and approaches to reprogramming, different times of exposure, and so forth. It makes it very hard to envisage a near term therapy that operates much like present day gene therapies, meaning one vector and one cargo, as most tissues are comprised of many different cell types all mixed in together. On the other hand, the evidence to date, including that in the paper here, suggests that there are ways to create the desired rejuvenation of epigenetic patterns and mitochondrial function without the risk of somatic cells dedifferentiating into stem cells.

Continue reading “A Great Deal of Work Lies Ahead in the Development of In Vivo Reprogramming as a Therapy” »

Jun 4, 2021

First shipments of genetically modified salmon go to restaurants in eastern U.S.

Posted by in category: genetics

AquaBounty Technologies Inc. will initially send salmon to restaurants and away-from-home dining services where labeling as genetically engineered is not required, company CEO Sylvia Wulf said.

Jun 4, 2021

Sonothermogenetics for noninvasive and cell-type specific deep brain neuromodulation

Posted by in categories: biotech/medical, chemistry, genetics, neuroscience

Critical advances in the investigation of brain functions and treatment of brain disorders are hindered by our inability to selectively target neurons in a noninvasive manner in the deep brain.

This study aimed to develop sonothermogenetics for noninvasive, deep-penetrating, and cell-type-specific neuromodulation by combining a thermosensitive ion channel TRPV1 with focused ultrasound (FUS)-induced brief, non-noxious thermal effect.

The sensitivity of TRPV1 to FUS sonication was evaluated in vitro. It was followed by in vivo assessment of sonothermogenetics in the activation of genetically defined neurons in the mouse brain by two-photon calcium imaging. Behavioral response evoked by sonothermogenetic stimulation at a deep brain target was recorded in freely moving mice. Immunohistochemistry staining of ex vivo brain slices was performed to evaluate the safety of FUS sonication.

Jun 4, 2021

A Massive New Gene Editing Project Is Out to Crush Alzheimer’s

Posted by in categories: bioengineering, biotech/medical, genetics, neuroscience

The idea is simple: decades of research have found certain genes that seem to increase the chance of Alzheimer’s and other dementias. The numbers range over hundreds. Figuring out how each connects or influences another—if at all—takes years of research in individual labs. What if scientists unite, tap into a shared resource, and collectively solve the case of why Alzheimer’s occurs in the first place?

The initiative’s secret weapon is induced pluripotent stem cells, or iPSCs. Similar to most stem cells, they have the ability to transform into anything—a cellular genie, if you will. iPSCs are reborn from regular adult cells, such as skin cells. When transformed into a brain cell, however, they carry the original genes of their donor, meaning that they harbor the original person’s genetic legacy—for example, his or her chance of developing Alzheimer’s in the first place. What if we introduce Alzheimer’s-related genes into these reborn stem cells, and watch how they behave?

By studying these iPSCs, we might be able to follow clues that lead to the genetic causes of Alzheimer’s and other dementias—paving the road for gene therapies to nip them in the bud.