Menu

Blog

Archive for the ‘genetics’ category: Page 330

Dec 18, 2019

How to Slow Aging (and even reverse it)

Posted by in categories: biotech/medical, food, genetics, life extension, neuroscience

Scientists like Prof Sinclair have evidence of speeding up, slowing, and even reversing aging.
Thanks to LastPass for sponsoring this video. Click here to start using LastPass: https://ve42.co/VeLP

What causes aging? According to Professor David Sinclair, it is a loss of information in our epigenome, the system of proteins like histones and chemical markers like methylation that turn on and off genes. Epigenetics allow different cell types to perform their specific functions — they are what differentiate a brain cell from a skin cell. Our DNA is constantly getting broken, by cosmic rays, UV radiation, free radicals, x-rays and regular cell division etc. When our cells repair that damage, the epigenome is not perfectly reset. And hence over time, noise accumulates in our epigenome. Our cells no longer perform their functions well.

Continue reading “How to Slow Aging (and even reverse it)” »

Dec 18, 2019

First images of an ‘upgraded’ CRISPR tool

Posted by in categories: bioengineering, biotech/medical, genetics

Columbia scientists have captured the first images of a new gene editing tool that could improve upon existing CRISPR-based tools. The team developed the tool, called INTEGRATE, after discovering a unique “jumping gene” in Vibrio cholerae bacteria that could insert large genetic payloads in the genome without introducing DNA breaks.

In the new study, published today in Nature, the researchers harnessed a Nobel Prize-winning technique called cryo-electron microscopy to freeze the gene editing complex in action, revealing high-resolution details about how it works.

“We showed in our first study how to leverage INTEGRATE for targeted DNA insertions in ,” says Sam Sternberg, Ph.D., assistant professor of biochemistry & molecular biophysics at Columbia University Vagelos College of Physicians and Surgeons, who led the research with Israel Fernandez, Ph.D., assistant professor of biochemistry & at Columbia. “These new images, a wonderful collaboration with Israel Fernández’s lab, explain the biology with incredible molecular detail and will help us improve the system by guiding protein engineering efforts.”

Dec 17, 2019

A new gene therapy strategy, courtesy of Mother Nature

Posted by in categories: biotech/medical, genetics, nanotechnology, neuroscience

Scientists have developed a new gene-therapy technique by transforming human cells into mass producers of tiny nano-sized particles full of genetic material that has the potential to reverse disease processes.

Though the research was intended as a proof of concept, the experimental therapy slowed and prolonged survival in mice with gliomas, which constitute about 80 percent of in humans.

The technique takes advantage of exosomes, fluid-filled sacs that release as a way to communicate with other cells.

Dec 17, 2019

The First Evidence That Drugs Could Turn Back the Clock on Our Biological Age

Posted by in categories: biotech/medical, genetics, life extension

After decades of research, here it is: the first promising evidence in humans, albeit imperfect and early, that a cocktail of three drugs is enough to reverse the epigenetic clock—a measure of someone’s biological age and health.

The results came as a surprise to even the research team, who originally designed the trial for something a little less dazzling: to look at human growth hormone’s effects on the thymus, the cradle of the body’s immune system that deteriorates with age.

“Maintained immune function is seen in centenarians,” and thymus function is linked to all-cause mortality, explained study author Dr. Gregory Fahy at Intervene Immune, based in Los Angeles, California. “So we were hoping to use a year of growth hormone to maintain thymus function in middle-aged men, right before the tissue’s functions take a nosedive,” he said.

Dec 16, 2019

New CRISPR-based system targets amplified antibiotic-resistant genes

Posted by in categories: bioengineering, biotech/medical, food, genetics, health

Taking advantage of powerful advances in CRISPR gene editing, scientists at the University of California San Diego have set their sights on one of society’s most formidable threats to human health.

A research team led by Andrés Valderrama at UC San Diego School of Medicine and Surashree Kulkarni of the Division of Biological Sciences has developed a new CRISPR-based gene-drive system that dramatically increases the efficiency of inactivating a gene rendering bacteria antibiotic-resistant. The new system leverages technology developed by UC San Diego biologists in insects and mammals that biases genetic inheritance of preferred traits called “active genetics.” The new “pro-active” genetic system, or Pro-AG, is detailed in a paper published December 16 in Nature Communications.

Widespread prescriptions of and use in animal food production have led to a rising prevalence of antimicrobial resistance in the environment. Evidence indicates that these environmental sources of antibiotic resistance are transmitted to humans and contribute to the current health crisis associated with the dramatic rise in drug-resistant microbes. Health experts predict that threats from antibiotic resistance could drastically increase in the coming decades, leading to some 10 million drug-resistant disease deaths per year by 2050 if left unchecked.

Dec 15, 2019

Dr. David Sinclair Webinar – Lifespan: Why We Age – and Why We Don’t Have To

Posted by in categories: biotech/medical, genetics, life extension

https://www.youtube.com/watch?v=HOTS0HS7aq4

As part of the LEAF Longevity Bookclub and to celebrate the launch of Dr. David Sinclair’s new book, Lifespan: Why We Age and Why We Don’t Have To, we hosted a special webinar on the 18th of September. The new book takes us on a journey through the biology of why we age and spotlights the exciting research being done in the lab today which could potentially change the way we treat the diseases of aging.

Continue reading “Dr. David Sinclair Webinar – Lifespan: Why We Age – and Why We Don’t Have To” »

Dec 14, 2019

Deep learning helps tease out gene interactions

Posted by in categories: biotech/medical, genetics, robotics/AI

Carnegie Mellon University computer scientists have taken a deep learning method that has revolutionized face recognition and other image-based applications in recent years and redirected its power to explore the relationship between genes.

The trick, they say, is to transform massive amounts of gene expression data into something more image-like. Convolutional neural networks (CNNs), which are adept at analyzing visual imagery, can then infer which are interacting with each other. The CNNs outperform existing methods at this task.

The researchers’ report on how CNNs can help identify disease-related genes and developmental and genetic pathways that might be targets for drugs is being published today in the Proceedings of the National Academy of Science. But Ziv Bar-Joseph, professor of computational biology and , said the applications for the new method, called CNNC, could go far beyond gene interactions.

Dec 13, 2019

Humans are genetically hardwired to only live for 38 YEARS

Posted by in categories: biotech/medical, computing, genetics

Humans have a maximum natural lifespan of only 38 years, according to researchers, who have discovered a way to estimate how long a species lives based on its DNA.

Scientists at Australia’s national science agency have developed a genetic ‘clock’ computer model that they claim can accurately estimate how long different vertebrates are likely to survive — including both living and extinct species.

Continue reading “Humans are genetically hardwired to only live for 38 YEARS” »

Dec 12, 2019

Viewpoint: Rampage movie offers twisted take on CRISPR gene editing

Posted by in categories: bioengineering, biotech/medical, entertainment, genetics

Is a film based on a video game with fleeting mentions of a biotech buzzword compelling sci-fi? No. But I liked Rampage anyway.

The use of CRISPR to edit genes is perhaps the only novel plot point in this latest monster movie. An evil head of a biotech company subverts a scientist’s work to fashion a bioweapon that revs up the growth hormone gene, and more, in three unfortunate animals. Cue Godzilla, King Kong, and the beast in Lake Placid.

But the screenwriters seem to confuse gene editing with an infectious bioweapon, like anthrax. The tagline at IMDb reveals the befuddlement: “When three different animals become infected with a dangerous pathogen, a primatologist and a geneticist team up to stop them from destroying Chicago.” Infectious disease, genetic modification, or both?

Dec 12, 2019

By turning stem cells into brain cells, Aspen Neuroscience hopes to rewind the progress of Parkinson’s disease

Posted by in categories: biotech/medical, genetics, neuroscience

The idea of a cell therapy for Parkinson’s disease starts out simple: Symptoms of the progressive disease are largely driven by the deaths of dopamine-producing neurons found deep within the brain. With lower levels of the neurotransmitter come the characteristic tremors, rigidity and slow movements.

By replacing those lost nerve cells with new dopamine producers, researchers hope to renew the brain’s connection to the body’s muscles and improve a person’s overall motor function.

But in the brain, everything becomes more complicated. On top of the risk of immune system rejection that comes with any kind of living tissue transplant, it’s important to make sure the implanted cells function correctly and do not pick up any dangerous genetic mutations as they grow.