Menu

Blog

Archive for the ‘genetics’ category: Page 70

Jan 22, 2024

Accidental Discovery: How a Whiff of an Unusual Chemical Transforms Seedlings Into Super Plants

Posted by in categories: chemistry, energy, genetics

Researchers have found that treating seeds with ethylene gas increases both their growth and stress tolerance. This discovery, involving enhanced photosynthesis and carbohydrate production in plants, offers a potential breakthrough in improving crop yields and resilience against environmental stressors.

Just like any other organism, plants can get stressed. Usually, it’s conditions like heat and drought that lead to this stress, and when they’re stressed, plants might not grow as large or produce as much. This can be a problem for farmers, so many scientists have tried genetically modifying plants to be more resilient.

Continue reading “Accidental Discovery: How a Whiff of an Unusual Chemical Transforms Seedlings Into Super Plants” »

Jan 21, 2024

2-Minute Neuroscience: Autism

Posted by in categories: genetics, neuroscience

Autism is characterized by impairments in social communication and interaction and restricted and repetitive behaviors. In this video, I discuss the neuroscience of autism along with potential factors and mechanisms involved in the development of autism.

TRANSCRIPT:

Continue reading “2-Minute Neuroscience: Autism” »

Jan 21, 2024

Trigonelline Increases NAD, Improves Muscle Function, And Extends Lifespan: Vincenzo Sorrentino, PhD

Posted by in categories: genetics, life extension

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhDDiscount Links: Telomere, Epigenetic Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7x

Jan 21, 2024

TRNA ‘Wobble’ Helps Cells Boost Antibody Production

Posted by in categories: biotech/medical, genetics, neuroscience

The various identities of cells, whether they are in the brain, heart, kidney, or any other tissue, are defined by the genes they expressed. In basic terms, the genes that are active in a cell are transcribed into RNA molecules that are then translated into proteins using tRNA molecules. In the genetic code, three base pair sequences of DNA, or codons, represent amino acids. These amino acids are moved into place by tRNA molecules, which have matching anticodons, to make proteins. There is redundancy in the genetic code as well, in which one amino acid can often be encoded by a few different codons.

Protein production varies considerably in different cells, and this is especially notable in cells that generate antibodies. These cells often have to spring into action and shift into high gear to generate many infection-fighting antibodies quickly. These antibody producers are B cells, and they often make significant metabolic adaptations when they’re needed.

Jan 20, 2024

The Forces That Drive Evolution May Not Be as Random as We Thought

Posted by in categories: biotech/medical, evolution, genetics

The random nature of genetic mutation implies evolution is largely unpredictable. But recent research suggests this may not be entirely so, with interactions between genes playing a bigger role than expected in determining how a genome changes.

It’s known that some areas of the genome are more likely to be mutable than others, but a new study now suggests a species’ evolutionary history may play a role in making mutations more predictable too.

“The implications of this research are nothing short of revolutionary,” says University of Nottingham evolutionary biologist James McInerney.

Jan 20, 2024

Supercomputer uses machine learning to set new speed record

Posted by in categories: biotech/medical, genetics, robotics/AI, space travel, supercomputing

Give people a barrier, and at some point they are bound to smash through. Chuck Yeager broke the sound barrier in 1947. Yuri Gagarin burst into orbit for the first manned spaceflight in 1961. The Human Genome Project finished cracking the genetic code in 2003. And we can add one more barrier to humanity’s trophy case: the exascale barrier.

The exascale barrier represents the challenge of achieving exascale-level computing, which has long been considered the benchmark for high performance. To reach that level, however, a computer needs to perform a quintillion calculations per second. You can think of a quintillion as a million trillion, a billion billion, or a million million millions. Whichever you choose, it’s an incomprehensibly large number of calculations.

Continue reading “Supercomputer uses machine learning to set new speed record” »

Jan 19, 2024

Genome-wide association study identifies 74 loci associated with educational attainment

Posted by in categories: biotech/medical, education, genetics

A genome-wide association study in 293,723 individuals identifies 74 genetic variants associated with educational attainment, which, although only explaining a small proportion of the variation in educational attainment, highlights candidate genes and pathways for further study.

Jan 19, 2024

Scientists are finding more genes linked to IQ. This doesn’t mean we can predict intelligence

Posted by in category: genetics

Researchers using huge data sets to understand genetics and behavior worry their findings will be misinterpreted.

Jan 19, 2024

Genetic variation, brain, and intelligence differences

Posted by in categories: genetics, neuroscience

Deary, I.J., Cox, S.R. & Hill, W.D. Genetic variation, brain, and intelligence differences. Mol Psychiatry 27, 335–353 (2022). https://doi.org/10.1038/s41380-021-01027-y.

Download citation.

Jan 18, 2024

FDA Approves New CRISPR Gene-Editing Treatment

Posted by in categories: biotech/medical, genetics

The Food and Drug Administration approved the use of Casgevy, a CRISPR gene-editing therapy, for treating the serious blood disorder transfusion-dependent beta thalassemia—the second major approval for the emerging therapy.

Page 70 of 519First6768697071727374Last