Menu

Blog

Archive for the ‘materials’ category: Page 87

Aug 20, 2023

AI platform ‘evolves’ metamaterials

Posted by in categories: materials, robotics/AI

With just a couple of “pieces of matter”—representations of one basic unit of a material—the new platform can create thousands of previously unknown morphologies, or structures, with the properties Amir Alavi specified.(Credit: Amir Alavi/U. Pittsburgh)

In a paper published in the journal Advanced Intelligent Systems, Amir Alavi, assistant professor of civil and environmental engineering in the University of Pittsburgh’s Swanson School of Engineering, outlines a platform for the evolution of metamaterials, synthetic materials purposefully engineered to have specific properties.

Aug 20, 2023

Plasmonic Metamaterials Bend Light Backwards

Posted by in categories: materials, nanotechnology

A thin film patterned with nanoantennas exhibits negative refraction of light, a useful feature for subwavelength imaging.

Materials that refract light the “wrong way” could be used to make optical lenses that can image objects smaller than visible wavelengths. So-called negative refraction has been demonstrated in thin films in which surface plasmons—collective charge oscillations—have been excited by a powerful laser. Now, an international team involving Purdue University, Indiana, the University of Glasgow, UK, and Imperial College London show that they can more efficiently achieve the same effect by placing an array of nanoscale antennas on the film.

Aug 18, 2023

Scientists Trapped Light Inside a Metamaterial and Made It 10x More Magnetic

Posted by in category: materials

This could open doors to technologies we thought were impossible.

Aug 17, 2023

Mid-infrared analogue polaritonic reversed Cherenkov radiation in natural anisotropic crystals

Posted by in category: materials

Here, the authors demonstrate an analogue reversed Cherenkov radiation at mid-infrared frequencies in MoO3, a natural hyperbolic material, and show that the radiation angle and the quality factor can be increased by stacking hBN layers on the MoO3 surface.

Aug 17, 2023

Scientists trap light inside a magnet

Posted by in categories: materials, quantum physics

A new study led by Vinod M. Menon and his group at the City College of New York shows that trapping light inside magnetic materials may dramatically enhance their intrinsic properties. Strong optical responses of magnets are important for the development of magnetic lasers and magneto-optical memory devices, as well as for emerging quantum transduction applications.

In their new article in Nature, Menon and his team report the properties of a layered magnet that hosts strongly bound excitons—quasiparticles with particularly strong optical interactions. Because of that, the material is capable of trapping light—all by itself.

As their experiments show, the optical responses of this material to magnetic phenomena are orders of magnitude stronger than those in typical magnets. “Since the light bounces back and forth inside the magnet, interactions are genuinely enhanced,” said Dr. Florian Dirnberger, the lead-author of the study.

Aug 17, 2023

Scientists Have Summoned a Massless Demon Particle

Posted by in categories: materials, particle physics

It’ll help unlock the inner workings of superconductors.

Aug 17, 2023

Scientists explain the behavior of supercooled liquids

Posted by in category: materials

Kranthi Mandadapu.

This is according to a press release by the institution published on Tuesday.

Aug 17, 2023

Faster spin waves could make novel computing systems possible

Posted by in categories: computing, materials

Research is underway around the world to find alternatives to our current electronic computing technology, as great, electron-based systems have limitations. A new way of transmitting information is emerging from the field of magnonics. Instead of electron exchange, the waves generated in magnetic media could be used for transmission, but magnonics-based computing has been (too) slow to date.

Scientists at the University of Vienna have now discovered a significant new method. When the intensity is increased, the spin become shorter and faster—another step towards magnon computing. The results are published in the journal Science Advances.

Magnonics is a relatively new field of research in magnetism in which spin waves play a central role. A local disturbance in the magnetic order of a magnet can propagate as waves through a material. These waves are called spin waves, and the associated quasiparticles are called magnons. They carry information in the form of angular momentum pulses. Because of this property, they can be used as low-power data carriers in smaller and more energy-efficient computers of the future.

Aug 16, 2023

Chinese Scientists Develop a High-Performance Ultralong-Life Aqueous Zinc-Ion Battery

Posted by in categories: innovation, materials

A research team has developed an advanced aqueous zinc-ion battery with an enhanced cycle lifespan using a weak magnetic field and a new VS2 material. The breakthrough addresses the challenges of zinc dendrite growth and cathode material limitations. Credit: Mao Yunjie.

A research team at the Hefei Institutes of Physical Science (HFIPS) of Chinese Academy of Sciences (CAS), led by Prof. Zhao Bangchuan, developed a high-performance aqueous zinc-ion battery with ultralong cycle lifespan in a weak magnetic field.

The findings were recently published in the journal Materials Horizons.

Aug 15, 2023

Hand-held tube containing aluminum foil balls produces enough electricity to power LED array when shaken

Posted by in categories: biotech/medical, materials

A team of mechanical engineers from Chung-Ang University, Massachusetts General Hospital, LS Materials and Yonsei University has found that a hand-held cylinder containing crumpled aluminum foil balls is capable of producing enough electricity when shaken to light a small LED grid. In their paper published in the journal Advanced Science, the group describes other materials used in the cylinder and possible uses for such a device.

Prior research has shown that a wide variety of materials can be used to generate , and that some constructions can capture that . Researchers have suggested such devices could be useful as the power needs of personal electronics decrease. In this new effort, the researchers have looked to aluminum foil as a material for generating static electricity and capturing it to power an external device.

Continue reading “Hand-held tube containing aluminum foil balls produces enough electricity to power LED array when shaken” »

Page 87 of 308First8485868788899091Last