Menu

Blog

Archive for the ‘nanotechnology’ category: Page 93

Feb 19, 2023

Researchers develop greener alternative to fossil fuels

Posted by in categories: economics, nanotechnology, particle physics, solar power, sustainability

Researchers at the University of North Carolina at Chapel Hill Department of Chemistry have engineered silicon nanowires that can convert sunlight into electricity by splitting water into oxygen and hydrogen gas, a greener alternative to fossil fuels.

Fifty years ago, scientists first demonstrated that liquid water can be split into oxygen and using electricity produced by illuminating a semiconductor electrode. Although hydrogen generated using is a promising form of clean energy, low efficiencies and have hindered the introduction of commercial solar-powered hydrogen plants.

An economic feasibility analysis suggests that using a slurry of electrodes made from nanoparticles instead of a rigid solar panel design could substantially lower costs, making solar-produced hydrogen competitive with fossil fuels. However, most existing particle-based light-activated catalysts, also referred to as photocatalysts, can absorb only , limiting their energy-conversion efficiency under solar illumination.

Feb 18, 2023

Making nanoparticle building blocks for new materials

Posted by in categories: materials, nanotechnology

Some researchers are driven by the quest to improve a specific product, like a battery or a semiconductor. Others are motivated by tackling questions faced by a given industry. Rob Macfarlane, MIT’s Paul M. Cook Associate Professor in Materials Science and Engineering, is driven by a more fundamental desire.

“I like to make things,” Macfarlane says. “I want to make materials that can be functional and useful, and I want to do so by figuring out the basic principles that go into making new structures at many different size ranges.” (Image: Adam Glanzman)

Feb 17, 2023

Chromo-encryption method uses color to encode information

Posted by in categories: encryption, nanotechnology, security

In a new approach to security that unites technology and art, EPFL researchers have combined silver nanostructures with polarized light to yield a range of brilliant colors, which can be used to encode messages.

Cryptography is something of a new field for Olivier Martin, who has been studying the optics of nanostructures for many years as head of the Nanophotonics and Metrology Lab EPFL’s School of Engineering. But after developing some new silver nanostructures in collaboration with the Center of MicroNanoTechnology, Martin and Ph.D. student Hsiang-Chu Wang noticed that these nanostructures reacted to in an unexpected way, which just happened to be perfect for encoding information.

They found that when polarized light was shone through the nanostructures from certain directions, a range of vivid and easily-identifiable colors was reflected back. These different colors could be assigned numbers, which could then be used to represent letters using the standard code ASCII (American Standard Code for Information Interchange). To encode a secret message, the researchers applied a quaternary code using the digits 0, 1, 2 and 3 (as opposed to the more commonly used 0 and 1). The result was a series of four-digit strings composed of different color combinations that could be used to spell out a message, and the method of chromo-encryption was born.

Feb 17, 2023

Learning about Neuralink w/ James Douma (ChatGPT x Neuralink)

Posted by in categories: biotech/medical, existential risks, nanotechnology, robotics/AI

00:00 Intro.
01:01 ChatGPT x Neuralink.
16:45 Inserting stents into blood vessels.
26:48 Pros & Cons of Neuralink’s architecture.
31:55 Neuralink clinics.
33:51 Downloading our minds onto a Tesla Optimus Bot.
52:30 If you get a Neuralink, will you lose free will?
1:04:16 AI helping Neuralink.
1:09:55 Everyone’s brain is unique.
1:23:16 Getting a Neuralink as a baby.
1:25:20 Sleep paralysis.
1:30:01 Nanotechnology x Neuralink.
1:31:59 James has an idea for Neuralink.
1:46:22 James’ favorite answer to the Fermi Paradox.
1:55:08 Haha smile

Neura Pod is a series covering topics related to Neuralink, Inc. Topics such as brain-machine interfaces, brain injuries, and artificial intelligence will be explored. Host Ryan Tanaka synthesizes informationopinions, and conducts interviews to easily learn about Neuralink and its future.

Continue reading “Learning about Neuralink w/ James Douma (ChatGPT x Neuralink)” »

Feb 16, 2023

Scientists are making machines, wearable and implantable, to act as kidneys

Posted by in categories: biotech/medical, chemistry, nanotechnology, wearables

“It doesn’t have just a static function. It has a bank of sensors that measure chemicals in the blood and feeds that information back to the device,” Kurtz says.

Other startups are getting in on the game. Nephria Bio, a spinout from the South Korean-based EOFlow, is working to develop a wearable dialysis device, akin to an insulin pump, that uses miniature cartridges with nanomaterial filters to clean blood (Harhay is a scientific advisor to Nephria). Ian Welsford, Nephria’s co-founder and CTO, says that the device’s design means that it can also be used to treat acute kidney injuries in resource-limited settings. These potentials have garnered interest and investment in artificial kidneys from the U.S. Department of Defense.

For his part, Burton is most interested in an implantable device, as that would give him the most freedom. Even having a regular outpatient procedure to change batteries or filters would be a minor inconvenience to him.

Feb 16, 2023

Nanotech Away Missions: Picogram-scale Probes To Explore Nearby Stars

Posted by in categories: alien life, nanotechnology

In a forward-looking article, George Church, PhD, from Harvard University and the Wyss Institute, proposes the use of picogram to nanogram-scale probes that can land, replicate, and produce a communications module at the destination to explore nearby stars.

The fascinating new article is published in a special issue on “Interstellar Objects in Astrobiology” of the peer-reviewed journal Astrobiology.

“One design is a highly reflective light sail, traveling a long straight line toward the gravitational well of a destination star, and the photo-deflected to the closest non-luminous mass – ideally a planet or moon with exposed liquid water,” states Dr. Church.

Feb 16, 2023

Model Shows How Intelligent-like Behavior Can Emerge From Non-living Agents

Posted by in categories: biotech/medical, chemistry, engineering, mathematics, nanotechnology

It acted with rudimentary intelligence, learning, evolving and communicating with itself to grow more powerful.

A new model by a team of researchers led by Penn State and inspired by Crichton’s novel describes how biological or technical systems form complex structures equipped with signal-processing capabilities that allow the systems to respond to stimulus and perform functional tasks without external guidance.

“Basically, these little nanobots become self-organized and self-aware,” said Igor Aronson, Huck Chair Professor of Biomedical Engineering, Chemistry, and Mathematics at Penn State, explaining the plot of Crichton’s book. The novel inspired Aronson to study the emergence of collective motion among interacting, self-propelled agents. The research was recently published in Nature Communications.

Feb 16, 2023

When the light is neither ‘on’ nor ‘off’ in the nanoworld

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

Whether the light in our living spaces is on or off can be regulated in everyday life simply by reaching for the light switch. However, when the space for the light is shrunk to a few nanometers, quantum mechanical effects dominate, and it is unclear whether there is light in it or not. Both can even be the case at the same time, as scientists from the Julius-Maximilians-Universität Würzburg (JMU) and the University of Bielefeld show in the journal Nature Physics (“Identifying the quantum fingerprint of plasmon polaritons”).

“Detecting these exotic states of quantum physics on the size scales of electrical transistors could help in the development of optical quantum technologies of future computer chips,” explains Würzburg professor Bert Hecht. The nanostructures studied were produced in his group.

The technology of our digital world is based on the principle that either a current flows or it does not: one or zero, on or off. Two clear states exist. In quantum physics, on the other hand, it is possible to disregard this principle and create an arbitrary superposition of the supposed opposites. This increases the possibilities of transmitting and processing information many times over. Such superposition states have been known for some time, especially for the particles of light, so-called photons, and are used in the detection of gravitational waves.

Feb 15, 2023

How a graphene-nanowire ‘sandwich’ is transforming electronics

Posted by in categories: computing, engineering, nanotechnology

As devices get smaller and more powerful, the risk of them overheating and burning out increases substantially. Despite advancements in cooling solutions, the interface between an electronic chip and its cooling system has remained a barrier for thermal transport due to the materials’ intrinsic roughness.

Material after graphene coating. (Image: CMU)

Sheng Shen, a professor of mechanical engineering Opens in new window, has fabricated a flexible, powerful, and highly-reliable material to efficiently fill the gap (ACS Nano, “3D Graphene-Nanowire “Sandwich” Thermal Interface with Ultralow Resistance and Stiffness”).

Feb 15, 2023

Gate-tunable nanoscale negative refraction of polaritons demonstrated in van der Waals heterostructure

Posted by in categories: computing, nanotechnology

A new study led by DAI Qing’s team from the National Center for Nanoscience and Technology (NCNST) of the Chinese Academy of Sciences (CAS) and Javier Abajo from the Institute of Photonic Sciences (ICFO) in Spain has shown a gate-tunable nanoscale negative refraction of polaritons in the mid-infrared range through a van der Waals heterostructure of graphene and molybdenum trioxide. The atomically thick heterostructures weaken scattering losses at the interface while enabling an actively tunable transition of normal to negative refraction through electrical gating.

The work was published in Science (“Gate-tunable negative refraction of mid-infrared polaritons”).

Basic principle of the “polariton transistor”. The van der Waals heterostructure is constructed by decorating graphene on the molybdenum trioxide, and the antenna stimulates the polariton to transmit through the interface to form negative refraction. (Image: DAI Qing et al.)

Page 93 of 305First9091929394959697Last