Menu

Blog

Archive for the ‘neuroscience’ category: Page 170

Jan 25, 2024

Innovative silicon nanochip can reprogram biological tissue in living body

Posted by in categories: biotech/medical, computing, engineering, life extension, neuroscience, singularity

Year 2021 Biocomputing is the future for the biological singularity because we could control all inputs and outputs of our bodies even evolve them eventually.


A silicon device that can change skin tissue into blood vessels and nerve cells has advanced from prototype to standardized fabrication, meaning it can now be made in a consistent, reproducible way. As reported in Nature Protocols, this work, developed by researchers at the Indiana University School of Medicine, takes the device one step closer to potential use as a treatment for people with a variety of health concerns.

The technology, called tissue nanotransfection, is a non-invasive nanochip device that can reprogram tissue function by applying a harmless electric spark to deliver specific genes in a fraction of a second. In laboratory studies, the device successfully converted into to repair a badly injured leg. The technology is currently being used to reprogram tissue for different kinds of therapies, such as repairing caused by stroke or preventing and reversing nerve damage caused by diabetes.

Continue reading “Innovative silicon nanochip can reprogram biological tissue in living body” »

Jan 25, 2024

Research suggests chronic pain is different for males and females

Posted by in categories: biotech/medical, neuroscience

A University of Alberta research team has uncovered differences in the way male and female mice develop and resolve chronic pain, pointing to potential pathways for future targeted treatments for humans.

In recently published research in Brain, Behavior, and Immunity, the team reports on its study of mice with chronic resulting from inflammation rather than direct injury. The researchers found that the were more sensitive to the effects of called macrophages. They also identified an X chromosome-linked receptor that is critical for resolving both acute and in both sexes.

“We’re always interested in understanding the triggers for pain, but in this study, we went up the next step to ask how pain resolves to determine how these immune cells are involved,” explains principal investigator Bradley Kerr, professor of anesthesiology and in the Faculty of Medicine & Dentistry.

Jan 24, 2024

Can autoimmune diseases be cured? Scientists see hope at last

Posted by in categories: biotech/medical, neuroscience

But then Santamaria, who is at the University of Calgary in Canada, came up with a bold idea. Maybe he could use these particles as a therapy to target and quiet, or even kill, the cells responsible for driving the disease — those that destroy insulin-producing islet cells in the pancreas. It seemed like a far-fetched idea, but he decided to try it. “I kept doing experiment after experiment,” he says. Now, more than two decades later, Santamaria’s therapy is on the cusp of being tested in people.

It’s not alone. Researchers have been trying for more than 50 years to tame the cells that are responsible for autoimmune disorders such as type 1 diabetes, lupus and multiple sclerosis. Most of the approved therapies for these conditions work by suppressing the entire immune response. This often alleviates symptoms but leaves people at elevated risk of infections and cancers.

But for decades, immunologists have hoped to restore what’s known as tolerance — the immune system’s ability to ignore antigens that belong in the body while appropriately attacking those that don’t. In some cases, that means administering the very antigens that the rogue cells are trained to attack, a strategy that can deprogram the cells and dampen the autoimmune response. Other researchers are trying to selectively wipe out the problematic cells, or to introduce suppressive immune cells that have been engineered to target them. One approach that relies on engineered immune cells was used to treat 15 people with lupus or other immune disorders with surprising success1. One participant has been symptom-free for more than two and a half years.

Jan 24, 2024

Alcohol Changes How Your Brain’s Genes Work. Changing Them Back May Fight Addiction

Posted by in categories: food, genetics, health, neuroscience

Many people are wired to seek and respond to rewards. Your brain interprets food as rewarding when you are hungry and water as rewarding when you are thirsty.

But addictive substances like alcohol and drugs of abuse can overwhelm the natural reward pathways in your brain, resulting in intolerable cravings and reduced impulse control.

A popular misconception is that addiction is a result of low willpower. But an explosion of knowledge and technology in the field of molecular genetics has changed our basic understanding of addiction drastically over the past decade. The general consensus among scientists and health care professionals is that there is a strong neurobiological and genetic basis for addiction.

Jan 24, 2024

Brain Thinning Predicts Alzheimer’s 10 Years Before Symptoms

Posted by in categories: biotech/medical, neuroscience

Summary: Researchers identified cortical gray matter thinning as a potential early biomarker for dementia. In a study involving 1,500 participants from diverse backgrounds, thinner cortical gray matter was linked to a higher risk of developing dementia 5 to 10 years before symptoms appeared.

This finding suggests that measuring gray matter thickness via MRI could be key in early dementia detection and intervention. The research highlights the importance of early diagnosis in managing and possibly slowing the progression of dementia.

Jan 24, 2024

The free-energy principle A unified brain theory.pdf

Posted by in category: neuroscience

The free energy principle a unified brain theory.


Shared with Dropbox.

Jan 24, 2024

What are the capabilities of a commercially available p-tau217 immunoassay to identify Alzheimer disease pathophysiology?

Posted by in categories: biotech/medical, neuroscience

In a recent study published in JAMA Neurology a group of researchers determined the utility of a novel and commercially available immunoassay for plasma phosphorylated tau 217 (p-tau217) to detect Alzheimer’s Disease (AD) pathology and evaluate reference ranges for abnormal amyloid β (Aβ) and longitudinal change across three selected cohorts.

Blood biomarkers have become key in AD diagnosis, offering a more scalable option than cerebrospinal fluid (CSF) or positron emission tomography (PET) scans. They are particularly beneficial in settings with limited access to advanced testing, paving the way for early and precise diagnosis and better patient management. p-tau, especially p-tau at threonine 217 (p-tau217), stands out as a leading blood biomarker. It excels in differentiating AD from other conditions and detecting AD in mild cognitive impairment cases, often outperforming other tau biomarkers.

As the medical community moves towards anti-Aβ therapies for dementia, validated blood biomarkers like p-tau217 are crucial for guiding treatment. Further research is necessary to validate plasma p-tau217 across diverse memory clinic populations, addressing comorbidities to enhance its clinical utility for AD.

Jan 24, 2024

Mind In Vitro Platforms: Versatile, Scalable, Robust, and Open Solutions to Interfacing with Living Neurons

Posted by in categories: bioengineering, biotech/medical, chemistry, neuroscience

Advanced Science is a high-impact, interdisciplinary science journal covering materials science, physics, chemistry, medical and life sciences, and engineering.

Jan 24, 2024

Microgravity Masters: Expedition 70 and Ax-3 Crews Working Together on Space Station

Posted by in categories: biotech/medical, chemistry, health, neuroscience

Eleven astronauts and cosmonauts from around the world are living and working together aboard the International Space Station (ISS) today, January 22. The four Axiom Mission 3 (Ax-3) private astronauts met the seven Expedition 70 crew members on Saturday beginning two weeks of dual operations.

The Ax-3 crew spent the weekend getting familiar with space station systems and emergency procedures before starting Monday with a full schedule of science and media activities. Ax-3 Commander Michael López-Alegría joined Pilot Walter Villadei and studied how microgravity affects the biochemistry of neurodegenerative diseases such as Alzheimer’s to improve health on Earth and in space. The duo later inserted samples into a fluorescence microscope for a study seeking to prevent and predict cancer diseases to protect crews in space and humans on Earth.

Jan 24, 2024

Researchers design new open-source technology for interfacing with living neurons

Posted by in categories: biological, neuroscience

Mind In Vitro Platforms: Versatile, Scalable, Robust, and Open Solutions to Interfacing with Living Neurons.


Neurons intricately communicate and respond to stimuli within a vast network, orchestrating essential functions from basic bodily processes to complex thoughts. Traditional neuroscience methods, relying on in vivo electrophysiology (within a living organism), often have difficulty addressing the complexity of the brain as a whole.

An alternative approach involves extracting cells from the organism and conducting studies on a culture dish instead (in vitro), providing researchers with enhanced control and precision in measuring neural processes.

Continue reading “Researchers design new open-source technology for interfacing with living neurons” »

Page 170 of 1,028First167168169170171172173174Last