Menu

Blog

Archive for the ‘neuroscience’ category: Page 343

Mar 1, 2023

Explainer: What is a ‘biocomputer’ and organoid intelligence

Posted by in categories: computing, neuroscience

A new paper has been released that outlines a type of ‘roadmap’ for biocomputers – computers drawing memory and power from human neurons – or brain cells.

The crux of the new work is a term called ‘organoid intelligence’ – this is the idea that a small group of human neurons could begin understanding it’s environment, learn and remember.

But to understand this, we first have to look to what an organoid is and how they are made.

Mar 1, 2023

Gene Therapy Clinical Trial for Frontotemporal Dementia Has Begun

Posted by in categories: biotech/medical, genetics, neuroscience

Bruce Willis has FTD. I always wondered if gene therapy could help. Apparently so did Passage Bio, and they are doing clinical trials.

FTD is a disorder that affects the frontal and temporal lobes of the brain, areas that control personality, executive function, and language. FTD is a form of early onset dementia and currently has no approved disease-modifying therapies. In approximately 5–10% of individuals with FTD, the disease occurs because of mutations in the GRN gene. These mutations cause a deficiency of progranulin that helps regulate cellular processes.

Continue reading “Gene Therapy Clinical Trial for Frontotemporal Dementia Has Begun” »

Mar 1, 2023

Am I Self-Conscious? (Or Does Self-Organization Entail Self-Consciousness?)

Posted by in categories: biological, evolution, mathematics, neuroscience

Is self-consciousness necessary for consciousness? The answer is yes. So there you have it—the answer is yes. This was my response to a question I was asked to address in a recent AEON piece (https://aeon.co/essays/consciousness-is-not-a-thing-but-a-process-of-inference). What follows is based upon the notes for that essay, with a special focus on self-organization, self-evidencing and self-modeling. I will try to substantiate my (polemic) answer from the perspective of a physicist. In brief, the argument goes as follows: if we want to talk about creatures, like ourselves, then we have to identify the characteristic behaviors they must exhibit. This is fairly easy to do by noting that living systems return to a set of attracting states time and time again. Mathematically, this implies the existence of a Lyapunov function that turns out to be model evidence (i.e., self-evidence) in Bayesian statistics or surprise (i.e., self-information) in information theory. This means that all biological processes can be construed as performing some form of inference, from evolution through to conscious processing. If this is the case, at what point do we invoke consciousness? The proposal on offer here is that the mind comes into being when self-evidencing has a temporal thickness or counterfactual depth, which grounds inferences about the consequences of my action. On this view, consciousness is nothing more than inference about my future; namely, the self-evidencing consequences of what I could do.

There are many phenomena in the natural sciences that are predicated on the notion of “self”; namely, self-information, self-organization, self-assembly, self-evidencing, self-modeling, self-consciousness and self-awareness. To what extent does one entail the others? This essay tries to unpack the relationship among these phenomena from first (variational) principles. Its conclusion can be summarized as follows: living implies the existence of “lived” states that are frequented in a characteristic way. This mandates the optimization of a mathematical function called “surprise” (or self-information) in information theory and “evidence” in statistics. This means that biological processes can be construed as an inference process; from evolution through to conscious processing. So where does consciousness emerge? The proposal offered here is that conscious processing has a temporal thickness or depth, which underwrites inferences about the consequences of action.

Feb 28, 2023

Mature “Lab Grown” Neurons Hold Promise for Neurodegenerative Diseases Like Alzheimer’s

Posted by in categories: biotech/medical, neuroscience

A team of researchers led by Northwestern University has achieved a breakthrough by producing the most mature neurons to date from human induced pluripotent stem cells (iPSCs). This advancement opens up new avenues for medical research and the possibility of transplantation therapies for conditions such as neurodegenerative diseases and traumatic injuries.

Previous efforts to turn stem cells into neurons have resulted in functionally immature neurons that resemble those from the early stages of development. The limited maturation achieved through current stem cell culture methods restricts their potential for studying neurodegeneration.

The study was recently published in the journal Cell Stem Cell.

Feb 28, 2023

Tiny Worm Plays a Big Role in Learning Whether Parkinson’s Really Starts in the Gut

Posted by in categories: biotech/medical, neuroscience

Summary: Researchers are utilizing the C. elegnas worm to investigate the emerging theory that Parkinson’s disease starts in the gut and spreads to the brain.

Source: medical college of georgia at augusta university.

A tiny worm called the C. elegans is enabling scientists to explore the emerging theory that Parkinson’s disease starts in the gut.

Feb 28, 2023

Social deficits and seizures in autism genetic subtype tied to overexcited brain circuits

Posted by in categories: biotech/medical, genetics, neuroscience

Northwestern Medicine scientists have identified the cause of a genetic subtype of autism and schizophrenia that results in social deficits and seizures in mice and humans.

Scientists have discovered a key feature of this subtype is a duplicated gene that results in overactive or overexcited brain circuits. The subtype is called 16p11.2 duplication syndrome.

“We found that mice with the same found in humans are more likely to have and also have ,” said lead author Marc Forrest, research assistant professor of neuroscience at Northwestern University Feinberg School of Medicine.

Feb 28, 2023

Dopamine in Fear Extinction

Posted by in categories: biotech/medical, existential risks, neuroscience

The ability to extinguish fear memories when threats are no longer present is critical for adaptive behavior. Fear extinction represents a new learning process that eventually leads to the formation of extinction memories. Understanding the neural basis of fear extinction has considerable clinical significance as deficits in extinction learning are the hallmark of human anxiety disorders. In recent years, the dopamine (DA) system has emerged as one of the key regulators of fear extinction. In this review article, we highlight recent advances that have demonstrated the crucial role DA plays in mediating different phases of fear extinction. Emerging concepts and outstanding questions for future research are also discussed.

Learning to associate stimuli and situations with danger or safety is critical for survival and adaptive behavior. In the laboratory, these forms of learning are typically studied using Pavlovian fear conditioning and extinction. Fear conditioning is an example of associative learning in which an initially neutral stimulus such as a tone (conditioned stimulus, CS) comes to elicit fear responses after being paired in time with an aversive outcome such as a foot shock (unconditioned stimulus, US). Once the CS-US association is learned, subsequently repeated presentations of the CS in the absence of the aversive US result in a gradual decrease in conditioned fear responses, a process known as fear extinction. In the last decades, fear extinction has attracted much interest in part because deficits in extinction learning are thought to underlie human anxiety disorders, such as post-traumatic stress disorder (PTSD) and phobias (Graham and Milad, 2011; Pitman et al., 2012; Craske et al.

Feb 28, 2023

Groundbreaking Biomaterial Heals Tissues From the Inside Out

Posted by in categories: bioengineering, neuroscience

The substance can be administered via intravenous injection and holds the possibility of being used in the treatment of conditions such as heart attacks and traumatic brain injury, among others.

An innovative biomaterial has been developed that, when injected intravenously, reduces inflammation and stimulates cell and tissue repair. The efficacy of this biomaterial in treating heart attack-induced tissue damage was demonstrated through successful testing on both rodent and large animal models. The researchers also provided proof of concept, based on a rodent study, suggesting that the biomaterial may prove beneficial in the treatment of traumatic brain injury and pulmonary arterial hypertension.

“This biomaterial allows for treating damaged tissue from the inside out,” said Karen Christman, a professor of bioengineering at the University of California San Diego, and the lead researcher on the team that developed the material. “It’s a new approach to regenerative engineering.”

Feb 28, 2023

Dr. Doug Ethell — Founder & CEO, Leucadia Therapeutics — Diagnosing, Treating & Curing Alzheimer’s

Posted by in categories: biotech/medical, health, neuroscience

Diagnosing, Treating & Curing Alzheimer’s — Dr. Doug Ethell, PhD — Founder & CEO, Leucadia Therapeutics


Dr. Doug Ethell, Ph.D. is Founder and CEO at Leucadia Therapeutics (https://www.leucadiatx.com/), a pre-clinical-stage company focused on diagnosing, treating and curing Alzheimer’s disease.

Continue reading “Dr. Doug Ethell — Founder & CEO, Leucadia Therapeutics — Diagnosing, Treating & Curing Alzheimer’s” »

Feb 28, 2023

Scientists Are Creating Something Wild: Organoid Intelligence

Posted by in category: neuroscience

Get ready for biocomputers powered by human brain cells.

Page 343 of 1,029First340341342343344345346347Last