Menu

Blog

Archive for the ‘particle physics’ category: Page 170

May 31, 2023

Neil Gershenfeld: Self-Replicating Robots and the Future of Fabrication | Lex Fridman Podcast #380

Posted by in categories: alien life, military, particle physics, quantum physics, robotics/AI

Neil Gershenfeld is the director of the MIT Center for Bits and Atoms. Please support this podcast by checking out our sponsors:
- LMNT: https://drinkLMNT.com/lex to get free sample pack.
- NetSuite: http://netsuite.com/lex to get free product tour.
- BetterHelp: https://betterhelp.com/lex to get 10% off.

EPISODE LINKS:
Neil’s Website: http://ng.cba.mit.edu/
MIT Center for Bits and Atoms: https://cba.mit.edu/
Fab Foundation: https://fabfoundation.org/
Fab Lab community: https://fablabs.io/
Fab Academy: https://fabacademy.org/
Fab City: https://fab.city/

Continue reading “Neil Gershenfeld: Self-Replicating Robots and the Future of Fabrication | Lex Fridman Podcast #380” »

May 31, 2023

Professor Sean Carroll explains how Higgs Boson was discovered #physicist

Posted by in category: particle physics

Physicist Sean Carroll explains the discovery of Higgs Boson in simple terms. Credit-ICE at Dartmouth.

May 30, 2023

Quantum computers braided ‘anyons,’ long-sought quasiparticles with memory

Posted by in categories: computing, particle physics, quantum physics

Particle-like quantum states called non-abelian anyons remember being swapped and could be useful for protecting information in quantum computers.

May 30, 2023

A sapphire Schrödinger’s cat shows that quantum effects can scale up

Posted by in categories: particle physics, quantum physics

The atoms in a piece of sapphire oscillate in two directions at once, a mimic of the hypothetically dead-and-alive feline.

May 28, 2023

Study presents a new, highly efficient converter of quantum information carriers

Posted by in categories: computing, particle physics, quantum physics

Light is a key carrier of information. It enables high-speed data transmission around the world via fiber-optic telecommunication networks. This information-carrying capability can be extended to transmitting quantum information by encoding it in single particles of light (photons).

“To efficiently load single photons into processing devices, they must have specific properties: the right central wavelength or frequency, a suitable duration, and the right spectrum,” explains Dr. Michał Karpinski, head of the Quantum Photonics Laboratory at the Faculty of Physics of the University of Warsaw, and an author of the paper published in Nature Photonics.

Researchers around the globe are building prototypes of quantum computers using a variety of techniques, including trapped ions, , superconducting electric circuits, and ultracold atomic clouds. These quantum information processing platforms operate on a variety of time scales, from picoseconds through nanoseconds to even microseconds.

May 28, 2023

Semi-Visible Particle Jets: Is Dark Matter Hiding in Plain Sight?

Posted by in categories: cosmology, particle physics

What happens if dark-matter particles are produced inside a jet of Standard-Model particles? This leads to a novel detector signature known as semi-visible jets! The ATLAS Collaboration has come up with the first search for semi-visible jets, looking for them in a general production mode where two protons interact by exchanging an intermediate particle, which is then converted into two jets.

The elusive nature of dark matter remains one of the biggest mysteries in particle physics. Most of the searches have so far looked for events where a “weakly interacting” dark-matter particle is produced alongside a known Standard-Model particle. Since the dark-matter particle cannot be seen by the ATLAS detector, researchers look for an imbalance of transverse momentum (or “missing energy”).

May 28, 2023

Physicists engineer an atom laser that can stay on forever

Posted by in categories: particle physics, quantum physics

Quantum mechanics dictates that particles like atoms should also be thought of as waves and that technically we can build ‘atom lasers’ containing coherent waves of matter. The problem comes in making these matter waves last, so that they may be used in practical applications.

Now, a team of Amsterdam physicists has shown that this is indeed possible with some manipulation of the concept that underlies the atom laser, the so-called Bose-Einstein Condensate, or BEC for short, according to a press release published on June 10.

May 28, 2023

Higgs Boson Unveils New Secrets: Rare Decay Detected at Large Hadron Collider

Posted by in category: particle physics

The ATLAS and CMS collaborations have joined forces to establish the first evidence of the rare decay of the Higgs boson into a Z boson and a photon.

A photon is a particle of light. It is the basic unit of light and other electromagnetic radiation, and is responsible for the electromagnetic force, one of the four fundamental forces of nature. Photons have no mass, but they do have energy and momentum. They travel at the speed of light in a vacuum, and can have different wavelengths, which correspond to different colors of light. Photons can also have different energies, which correspond to different frequencies of light.

May 28, 2023

Scientists create matter from nothing in groundbreaking experiment

Posted by in categories: cosmology, particle physics, quantum physics

We’ve probably all heard the phrase you can’t make something from nothing. But in reality, the physics of our universe isn’t that cut and dry. In fact, scientists have spent decades trying to force matter from absolutely nothing. And now, they’ve managed to prove that a theory first shared 70 years ago was correct, and we really can create matter out of absolutely nothing.

The universe is made up of several conservation laws. These laws govern energy, charge, momentum, and so on down the list. In the quest to fully understand these laws, scientists have spent decades trying to figure out how to create matter – a feat that is far more complex than it even sounds. We’ve previously turned matter invisible, but creating it out of nothing is another thing altogether.

There are many theories on how to create matter from nothing – especially as quantum physicists have tried to better understand the Big Bang and what could have caused it. We know that colliding two particles in empty space can sometimes cause additional particles to emerge. There are even theories that a strong enough electromagnetic field could create matter and antimatter out of nothing itself.

May 27, 2023

Pioneering Experimental Method Unlocks Spin Structure Secrets in 2D Materials

Posted by in categories: nanotechnology, particle physics

Graphene is an allotrope of carbon in the form of a single layer of atoms in a two-dimensional hexagonal lattice in which one atom forms each vertex. It is the basic structural element of other allotropes of carbon, including graphite, charcoal, carbon nanotubes, and fullerenes. In proportion to its thickness, it is about 100 times stronger than the strongest steel.