Menu

Blog

Archive for the ‘particle physics’ category: Page 172

May 24, 2023

Higgs Boson: Our Passport to the Hidden Valley of New Physics in Next-Gen Particle Accelerators

Posted by in categories: futurism, particle physics

It may be that the famous Higgs boson, co-responsible for the existence of masses of elementary particles, also interacts with the world of the new physics that has been sought for decades. If this were indeed to be the case, the Higgs should decay in a characteristic way, involving exotic particles. At the Institute of Nuclear Physics of the Polish Academy of Sciences in Cracow, it has been shown that if such decays do indeed occur, they will be observable in successors to the LHC currently being designed.

When talking about the ‘hidden valley’, our first thoughts are of dragons rather than sound science. However, in high-energy physics, this picturesque name is given to certain models that extend the set of currently known elementary particles. In these so-called Hidden Valley models, the particles of our world as described by the Standard Model belong to the low-energy group, while exotic particles are hidden in the high-energy region. Theoretical considerations suggest then the exotic decay of the famous Higgs boson, something that has not been observed at the LHC accelerator despite many years of searching. However, scientists at the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Cracow argue that Higgs decays into exotic particles should already be perfectly observable in accelerators that are successors to the Large Hadron Collider – if the Hidden Valley models turn out to be consistent with reality.

“In Hidden Valley models we have two groups of particles separated by an energy barrier. The theory is that there could then be exotic massive particles that could cross this barrier under specific circumstances. The particles like Higgs boson or hypothetic Z’ boson would act as communicators between the particles of both worlds. The Higgs boson, one of the most massive particle of the Standard Model, is a very good candidate for such a communicator,” explains Prof. Marcin Kucharczyk (IFJ PAN), lead author of an article in the Journal of High Energy Physics, which presents the latest analyses and simulations concerning the possibility of detecting Higgs boson decays in the future lepton accelerators.

May 24, 2023

Bridging Quantum Theory and Relativity: Curved Spacetime in a Quantum Simulator

Posted by in categories: particle physics, quantum physics

New techniques can answer questions that were previously inaccessible experimentally — including questions about the relationship between quantum mechanics and relativity.

Scientists at TU Wien and other institutions have developed a “quantum simulator” using ultracold atomic clouds to model quantum particles in curved spacetime, marking a major step toward reconciling quantum theory and the theory of relativity. The model system offers a tool to study gravitational lensing effects in a quantum field, which may lead to new insights in the elusive field of quantum gravity and other areas of physics.

The theory of relativity works well when you want to explain cosmic-scale phenomena — such as the gravitational waves.

May 23, 2023

Strange star system may hold first evidence of an ultra-rare ‘dark matter star’

Posted by in categories: cosmology, particle physics

In a distant star system, a sunlike star orbits an invisible object that may be the first example of a ‘boson star’ made of dark matter, new research suggests.

May 22, 2023

Hello, Computer — Sabine Hossenfelder — A.I. going mainstream

Posted by in categories: cosmology, mathematics, media & arts, particle physics, quantum physics, robotics/AI

Perspective from a very-educated layman. Er, laywoman.


This is Hello, Computer, a series of interviews carried out in 2023 at a time when artificial intelligence appears to be going everywhere, all at once.

Continue reading “Hello, Computer — Sabine Hossenfelder — A.I. going mainstream” »

May 20, 2023

Physics: The big questions of our existence in under an hour

Posted by in categories: mathematics, particle physics, space

SABINE HOSSENFELDER: My name is Sabine Hossenfelder. I’m a physicist and Research Fellow at the Frankfurt Institute for Advanced Studies, and I have a book that’s called “Existential Physics: A Scientist’s Guide to Life’s Biggest Questions.”

NARRATOR: Why did you pursue a career in physics?

HOSSENFELDER: I originally studied mathematics, not physics, because I was broadly interested in the question how much can we describe about nature with mathematics? But mathematics is a really big field and I couldn’t make up my mind exactly what to study. And so I decided to focus on that part of mathematics that’s actually good to describe nature and that naturally led me to physics. I was generally trying to make sense of the world and I thought that human interactions, social systems are a pretty hopeless case. There’s no way I’ll ever make sense of them. But simple things like particles or maybe planets and moons, I might be able to work that out. In the foundations of physics, we work with a lot of mathematics and I know from my own experience that it’s really, really hard to learn. And so I think for a lot of people out there, the journal articles that we write in the foundations of physics are just incomprehensible.

May 19, 2023

Physics Breakthrough: First-Ever Measurement of a Quantum Paradox

Posted by in categories: particle physics, quantum physics

How do quantum particles exchange information? An intriguing hypothesis regarding quantum information has recently been validated through experimental verification conducted at TU Wien.

If you were to randomly pick an individual from a crowd who stands remarkably taller than the average, it’s quite likely that this person will also surpass the average weight. This is because, statistically, knowledge about one variable often gives us some insight into another.

Quantum physics takes these correlations to another level, establishing even more potent connections between disparate quantities: distinct particles or segments of a vast quantum system can “share” a specific amount of information. This intriguing theoretical premise suggests that the calculation of this “mutual information” is surprisingly not influenced by the system’s overall volume, but only by its surface.

May 19, 2023

When it comes to dark matter and dark energy, there’s more unknown that known

Posted by in categories: cosmology, particle physics

Click on photo to start video.

What we do know is that there is some mysterious force at work attracting and holding galaxies together, while dark energy is accelerating the universe at the same time…but neither one of these mysterious particles has been detected.

But now some scientists believe that dark matter might be swirling around the edges of black holes, and other physicists believe they have found dark energy right here on Earth, and some say dark energy might not be real after all. Could it be true? Get ready to find out the answers to this and more!

May 19, 2023

Ferrofluid is a type of fluid that contains suspended micro particles of iron, magnetite, or cobalt in a solvent

Posted by in category: particle physics

But that’s not all. 🧐.

May 19, 2023

Researchers discover new self-assembled crystal structures

Posted by in categories: computing, particle physics

Using a targeted computational approach, researchers in the Department of Materials Science and Engineering at Cornell University have found more than 20 new self-assembled crystal structures, none of which had been observed previously.

The research, published in the journal ACS Nano under the title “Targeted Discovery of Low-Coordinated Crystal Structures via Tunable Particle Interactions,” is authored by Ph.D. student Hillary Pan and her advisor Julia Dshemuchadse, assistant professor of materials science and engineering.

“Essentially we were trying to figure out what kinds of new configurations we can self-assemble in simulation,” Pan said. “The most exciting thing was that we found new structures that weren’t previously listed in any crystal structure database; these particles are actually assembling into something that nobody had ever seen before.”

May 19, 2023

Researchers use structured light on a chip in another photonics breakthrough

Posted by in categories: computing, particle physics

In everyday life we experience light in one of its simplest forms—optical rays or beams. However, light can exist in much more exotic forms. Thus, even beams can be shaped to take the form of spirals; so-called vortex beams, endowed with unusual properties. Such beams can make dust particles to spin, just like they indeed move along some intangible spirals.

Light modes with such added structure are called “structured,” and even more exotic forms of structured light can be attained in artificial optical materials—metamaterials, where multiple come together and combine to create the most complex forms of light.

In their two recent works, published back-to-back in Science Advances, and Nature Nanotechnology, City College of New York researchers from Alexander Khanikaev’s group have created structured light on a silicon chip, and used this added structure to attain new functionalities and control not available before.