Menu

Blog

Archive for the ‘particle physics’ category: Page 181

Apr 14, 2023

The ATLAS collaboration observes the electroweak production of two jets and a Z-boson pair

Posted by in category: particle physics

The ATLAS collaboration, the large research consortium involved in analyzing data collected by the ATLAS particle collider at CERN, recently observed the electroweak production of two Z bosons and two jets. This crucial observation, presented in Nature Physics, could greatly contribute to the understanding of standard model ℠ particle physics.

The SM of is a well-established theory describing the building blocks and fundamental forces in the universe. This model describes weak bosons (i.e., bosons responsible for the so-called ‘weak force’) as mediators of the electroweak interaction.

The scattering of massive weak bosons, such as W and Z bosons, is constrained specifically to interactions, where the mediators directly interact and scatter off each other. This scattering, also known as vector-boson scattering (VBS), also involves a type of Feynman diagrams or vertices known (i.e., quartic gauge vertices) that physicists have so far been unable to experimentally probe through other .

Apr 13, 2023

New kind of quantum transport discovered in a device combining high-temperature superconductors and graphene

Posted by in categories: particle physics, quantum physics

Developing new quantum devices relies on controlling how electrons behave. A material called graphene, a single layer of carbon atoms, has fascinated researchers in recent years because its electrons behave as if they have no mass. For decades, scientists have also been interested in high-temperature superconductors: ceramic materials where electron interactions yield a macroscopic quantum state where electrons pair with each other. They do so at a temperature above the usual superconducting temperature of metals, which approaches absolute zero.

In a recent study published in Physical Review Letters, researchers from the SUNY Polytechnic Institute, Stony Brook University and the Brookhaven National Laboratory in the US, along with Aalto University in Finland, demonstrated a new electronic device that employs the unique ways in which electrons behave in these two materials— and high-temperature superconductors.

The experiment, led by Sharadh Jois and Ji Ung Lee from SUNY with the support of theoretical work done by Jose Lado, assistant professor at Aalto, demonstrated a new quantum device that combines both graphene and an unconventional high-temperature superconductor.

Apr 13, 2023

Primordial Black Holes May Have “Frozen” the Early Universe

Posted by in categories: cosmology, particle physics

Primordial holes formed in the exotic conditions of the big bang may have become their own source of matter and radiation.

The standard story of the early universe goes like this. When our cosmos was incredibly young, it underwent a period of incredibly rapid expansion known as inflation. Then inflation went away and flooded the universe with particles and radiation in the hot big bang. Then the universe expanded and cooled, and as it did so the density of that matter and radiation dropped. Eventually the matter got itself together informed stars, galaxies and clusters.

Continue reading “Primordial Black Holes May Have ‘Frozen’ the Early Universe” »

Apr 13, 2023

Breakthrough in magnetic quantum material paves way for ultra-fast sustainable computers

Posted by in categories: computing, particle physics, quantum physics, sustainability

The discovery of new quantum materials with magnetic properties could pave the way for ultra-fast and considerably more energy-efficient computers and mobile devices. So far, these types of materials have been shown to work only in extremely cold temperatures. Now, a research team at Chalmers University of Technology in Sweden are the first to make a device made of a two-dimensional magnetic quantum material work in room temperature.

Today’s rapid IT expansion generates enormous amounts of digital data that needs to be stored, processed, and communicated. This comes with an ever-increasing need for energy—projected to consume more than 30% of the world’s total energy consumption by 2050. To combat the problem, the research community has entered a new paradigm in . The research and development of two-dimensional quantum materials, that form in sheets and are only a few atoms thick, have opened new doors for sustainable, faster and more energy-efficient data storage and processing in computers and mobiles.

The first atomically thin material to be isolated in a laboratory was graphene, a single atom-thick plane of graphite, that resulted in the 2010 Nobel Prize in Physics. And in 2017, two-dimensional materials with magnetic properties were discovered for the first time. Magnets play a fundamental role in our everyday lives, from sensors in our cars and home appliances to and memory technologies, and the discovery opened for new and more for a wide range of technology devices.

Apr 13, 2023

Ultra-luminous X-ray sources defy Eddington limit and unlock universal secrets

Posted by in categories: particle physics, space

The mystery of ultra-luminous X-ray sources (ULXs) and their astonishing brightness has been partially unraveled through a recent study utilizing NASA’s NuSTAR.

Scientists have long been perplexed by ultra-luminous X-ray sources (ULXs), cosmic objects that emit about 10 million times more energy than the Sun and appear to break the Eddington limit — a physical boundary that determines the maximum brightness of an object based on its mass. In a groundbreaking study published in The Astrophysical Journal, researchers have confirmed that these extraordinary light emitters surpass the Eddington limit, potentially due to their strong magnetic fields.


The effect of Eddington limit and magnetic fields

Continue reading “Ultra-luminous X-ray sources defy Eddington limit and unlock universal secrets” »

Apr 13, 2023

Miniature solar flares made in lab offer insight into high-speed energetic particles

Posted by in category: particle physics

The team created a vacuum chamber equipped with twin electrodes to simulate the coronal loop phenomenon.

Coronal loops are arcs of curving plasma that appear above the Sun’s surface. These loops are so powerful that they can travel up to 100,000 kilometers above the surface of the Sun and last for minutes to hours.

Understanding coronal loops.

Continue reading “Miniature solar flares made in lab offer insight into high-speed energetic particles” »

Apr 13, 2023

Cyborg Earth and the Technological Embryogenesis of the Biosphere

Posted by in categories: biological, chemistry, cyborgs, particle physics, quantum physics, robotics/AI

Humongous Fungus, a specimen of Armillaria ostoyae, has claimed the title of world’s largest single organism. Though it features honey mushrooms above ground, the bulk of this creature’s mass arises from its vast subterranean mycelial network of filamentous tendrils. It has spread across more than 2,000 acres of soil and weighs over 30,000 metric tons. Yet I would contend that Humongous Fungus represents a mere microcosm of the world’s true largest organism, a creature that I will call Cyborg Earth. What is Cyborg Earth? Eastern religions have suggested that all life is fundamentally interconnected. Cyborg Earth represents an extension of this concept.

All across the globe, biological life thrives. Quintillions upon quintillions of biomolecular computations happen every second, powering all life. Mycoplasma bacteria. Communities of leafcutter ants. The Humongous Fungus. Beloved beagles. Seasonal influenza viruses. Parasitic roundworms. Families of Canadian elk. Vast blooms of cyanobacteria. Humanity. Life works because of complexity that arises from simplicity that in turn arises from whatever inscrutable quantum mechanical rules lay beneath the molecular scale.

All creatures rearrange atoms in various ways. Termites and beavers rearrange larger bunches of atoms than most organisms. As humans progressed from paleolithic to metalwork to industrialization and then to the space age, information revolution, and era of artificial intelligence, they learned to converse with the atoms around them in an ever more complex fashion. We are actors in an operatic performance, we are subroutines of evolution, we are interwoven matryoshka patterns, an epic chemistry.

Apr 12, 2023

‘Alien Calculus’ Could Save Particle Physics From Infinities

Posted by in categories: information science, mathematics, particle physics

In the math of particle physics, every calculation should result in infinity. Physicists get around this by just ignoring certain parts of the equations — an approach that provides approximate answers. But by using the techniques known as “resurgence,” researchers hope to end the infinities and end up with perfectly precise predictions.

Apr 12, 2023

The Electron Is So Round That It’s Ruling Out New Particles

Posted by in category: particle physics

If the electron’s charge wasn’t perfectly round, it could reveal the existence of hidden particles. A new measurement approaches perfection.

Apr 12, 2023

Physicists take step toward fault-tolerant quantum computing

Posted by in categories: computing, particle physics, quantum physics

Some classical computers have error correction built into their memories based on bits; quantum computers, to be workable in the future, will need error correction mechanisms, too, based on the vastly more sensitive qubits.

Cornell researchers have recently taken a step toward fault-tolerant quantum computing: they constructed a simple model containing exotic particles called non-Abelian anyons, compact and practical enough to run on modern quantum hardware. Realizing these particles, which can only exist in two dimensions, is a move towards implementing it in the real world.

Thanks to some creative thinking, Yuri Lensky, a former Bethe/Wilkins/Kavli Institute at Cornell (KIC) postdoctoral fellow in physics in the College of Arts and Sciences (A&S), collaborating with Eun-Ah Kim, professor of physics (A&S), came up with a simple “recipe” that could be used for robustly computing with non-Abelian anyons, including specific instructions for executing the effect experimentally on devices available today.