Menu

Blog

Archive for the ‘particle physics’ category: Page 220

Dec 1, 2022

Physicists produce symmetry-protected Majorana edge modes on quantum computer

Posted by in categories: particle physics, quantum physics, robotics/AI

Physicists at Google Quantum AI have used their quantum computer to study a type of effective particle that is more resilient to environmental disturbances that can degrade quantum calculations. These effective particles, known as Majorana edge modes, form as a result of a collective excitation of multiple individual particles, like ocean waves form from the collective motions of water molecules. Majorana edge modes are of particular interest in quantum computing applications because they exhibit special symmetries that can protect the otherwise fragile quantum states from noise in the environment.

The condensed matter physicist Philip Anderson once wrote, “It is only slightly overstating the case to say that physics is the study of symmetry.” Indeed, studying and their relationship to underlying symmetries has been the main thrust of physics for centuries. Symmetries are simply statements about what transformations a system can undergo—such as a translation, rotation, or inversion through a mirror—and remain unchanged. They can simplify problems and elucidate underlying physical laws. And, as shown in the new research, symmetries can even prevent the seemingly inexorable quantum process of decoherence.

When running a calculation on a quantum computer, we typically want the quantum bits, or “qubits,” in the computer to be in a single, pure quantum state. But decoherence occurs when external electric fields or other environmental disturb these states by jumbling them up with other states to create undesirable states. If a state has a certain symmetry, then it could be possible to isolate it, effectively creating an island of stability that is impossible to mix with the other states that don’t also have the special symmetry. In this way, since the noise can no longer connect the symmetric state to the others, it could preserve the coherence of the state.

Nov 30, 2022

Antimatter Spacecraft: The Future of Interstellar Travel

Posted by in categories: particle physics, space travel

Year 2021 😁


Spacecrafts in dozens of sci-fi movies like Star Trek use antimatter propulsion systems to travel at unimaginably high speeds by warping spacetime. By using them, traveling to different planets and stars is significantly more efficient and quick. However, is it possible to make this sci-fi idea a reality? If so, how and when will we be able to use them? Let’s take a closer look.

Continue reading “Antimatter Spacecraft: The Future of Interstellar Travel” »

Nov 30, 2022

NASA uses a climate simulation supercomputer to better understand black hole jets

Posted by in categories: climatology, cosmology, evolution, particle physics, supercomputing

NASA’s Discover supercomputer simulated the extreme conditions of the distant cosmos.

A team of scientists from NASA’s Goddard Space Flight Center used the U.S. space agency’s Center for Climate Simulation (NCCS) Discover supercomputer to run 100 simulations of jets emerging from supermassive black holes.

Continue reading “NASA uses a climate simulation supercomputer to better understand black hole jets” »

Nov 29, 2022

First-time ATLAS measurement provides new look at Higgs

Posted by in category: particle physics

Luka Selem says he was always a curious kid. Growing up in France, he was given copies of Science et vie junior, a science magazine for young people, by his parents.

“Since I was very young, I was always interested in quite a lot of things,” he says. “I was always asking, ‘Why? But why that? Why that, and then why that?’ I wanted to go all the way to the end. I was never satisfied by the answer.”

Particle physics, the study of the fundamental particles and forces that make up everything around us, turned out to be a good way for Selem to search for answers. “In particle physics, there is no other ‘why,’” he says. “No one can tell me the rest of the story. I have to find it myself with my colleagues.”

Nov 29, 2022

How to fire projectiles through materials without breaking anything

Posted by in categories: nanotechnology, particle physics

When charged particles are shot through ultra-thin layers of material, sometimes spectacular micro-explosions occur, and sometimes the material remains almost intact. The reasons for this have now been explained by researchers at the TU Wien.

It sounds a bit like a : Some materials can be shot through with fast, electrically charged ions without exhibiting holes afterwards. What would be impossible at the macroscopic level is allowed at the level of individual particles. However, not all materials behave the same in such situations—in recent years, different research groups have conducted experiments with very different results.

At the TU Wien (Vienna, Austria), it has now been possible to find a detailed explanation of why some materials are perforated and others are not. This is interesting, for example, for the processing of thin membranes, which are supposed to have tailor-made nano-pores in order to trap, hold or let through very specific atoms or molecules there.

Nov 28, 2022

A scalable quantum memory with a lifetime over 2 seconds and integrated error detection

Posted by in categories: computing, particle physics, quantum physics

Quantum memory devices can store data as quantum states instead of binary states, as classical computer memories do. While some existing quantum memory technologies have achieved highly promising results, several challenges will need to be overcome before they can be implemented on a large scale.

Researchers at the AWS Center for Quantum Networking and Harvard University have recently developed a promising capable of error detection and with a lifetime or coherence time (i.e., the time for which a quantum memory can hold a superposition without collapsing) exceeding 2 seconds. This memory, presented in a paper in Science, could pave the way towards the creation of scalable quantum networks.

Quantum networks are systems that can distribute entangled , or qubits, to users who are in different geographic locations. While passing through the networks, qubits are typically encoded as photons (i.e., single particles of light).

Nov 28, 2022

Creating quantum-entangled networks of atomic clocks and accelerometers

Posted by in categories: particle physics, quantum physics

Researchers affiliated with the Q-NEXT quantum research center show how to create quantum-entangled networks of atomic clocks and accelerometers—and they demonstrate the setup’s superior, high-precision performance.

For the first time, scientists have entangled atoms for use as networked , specifically, atomic clocks and accelerometers.

The research team’s experimental setup yielded ultraprecise measurements of time and acceleration. Compared to a similar setup that does not draw on , their time measurements were 3.5 times more precise, and acceleration measurements exhibited 1.2 times greater precision.

Nov 28, 2022

Chiral orbit currents create new quantum state

Posted by in categories: chemistry, computing, particle physics, quantum physics

Physicists have discovered a new quantum state in a material with the chemical formula Mn3SiTe6. The new state forms due to long-theorized but never previously observed internal currents that flow in loops around the material’s honeycomb-like structure. According to its discoverers, this new state could have applications for quantum sensors and memory storage devices for quantum computers.

Mn3SiTe6 is a ferrimagnet, meaning that its component atoms have opposing but unequal magnetic moments. It usually behaves like an insulator, but when physicists led by Gang Cao of the University of Colorado, Boulder, US, exposed it to a magnetic field applied along a certain direction, they found that it became dramatically more conducting – almost like it had morphed from being a rubber to a metal.

This effect, known as colossal magnetoresistance (CMR), is not itself new. Indeed, physicists have known about it since the 1950s, and it is now employed in computer disk drives and many other electronic devices, where it helps electric currents shuttle across along distinct trajectories in a controlled way.

Nov 28, 2022

Completing Einstein’s Theories — A Particle Physics Breakthrough

Posted by in categories: information science, particle physics

Osaka University researchers show the relativistic contraction of an electric field produced by fast-moving charged particles, as predicted by Einstein’s theory, which can help improve radiation and particle physics research.

Over a century ago, one of the most renowned modern physicists, Albert Einstein, proposed the ground-breaking theory of special relativity. Most of everything we know about the universe is based on this theory, however, a portion of it has not been experimentally demonstrated until now. Scientists from Osaka University’s Institute of Laser Engineering utilized ultrafast electro-optic measurements for the first time to visualize the contraction of the electric field surrounding an electron beam traveling at near the speed of light and demonstrate the generation process.

According to Einstein’s theory of special relativity, one must use a “Lorentz transformation” that combines space and time coordinates in order to accurately describe the motion of objects passing an observer at speeds near the speed of light. He was able to explain how these transformations resulted in self-consistent equations for electric and magnetic fields.

Nov 27, 2022

Photochemistry is confirmed on an exoplanet

Posted by in categories: chemistry, particle physics, space

The latest data improves our understanding of how clouds in “hot Jupiter” exoplanets like this might appear up close. They are likely to be broken up, rather than a single, uniform blanket over the planet.


Photochemistry is the result of light triggering chemical reactions. This process is fundamental to life on Earth: it makes ozone, for example, which protects us from harsh ultraviolet (UV) rays.

New observations of WASP-39 b, a Jupiter-sized planet orbiting a Sun-like star found 700 light years away, confirm the presence of a never-before-seen molecule in the atmosphere – sulfur dioxide – among other details.

Continue reading “Photochemistry is confirmed on an exoplanet” »