Menu

Blog

Archive for the ‘quantum physics’ category: Page 132

Mar 9, 2024

Spacetime from Entanglement Entropy! | with Tadashi Takayanagi

Posted by in category: quantum physics

A holographic universe where spacetime is built from quantum bits. In this interview, we hear all about how the concept of entanglement entropy, a measure of quantum information between regions is related to the structure of spacetime. What can we learn from entanglement and entropy about gravity, and what has gravity to say about quantum physics? We find out in this video.

Tadashi Takayanagi is a prominent Japanese researcher most known for his research on holographic entanglement entropy for which he won the 2015 New Horizon award. Tadashi did his Ph.D. at Tokyo University and has obtained postdoc positions at Harvard and Kavli Institute of Theoretical Physics at the University of California. He is currently a professor at Kyoto University and holds a visiting position at Kavli Institute. A well-known hobby of Tadashi is his mineral collection from which he draws inspiration for his research work.

Mar 9, 2024

Assembly Theory: Bold New ‘Theory of Everything’ Could Unite Physics And Evolution

Posted by in categories: biotech/medical, engineering, evolution, quantum physics

A recent study conducted at Tel Aviv University has devised a large mechanical system that operates under dynamical rules akin to those found in quantum systems. The dynamics of quantum systems, composed of microscopic particles like atoms or electrons, are notoriously difficult, if not impossible, to observe directly.

However, this new system allows researchers to visualize occurring in specialized “topological” materials through the movement of a system of coupled pendula.

The research is a collaboration between Dr. Izhar Neder of the Soreq Nuclear Research Center, Chaviva Sirote-Katz of the Department of Biomedical Engineering, Dr. Meital Geva and Prof. Yair Shokef of the School of Mechanical Engineering, and Prof. Yoav Lahini and Prof. Roni Ilan of the School of Physics and Astronomy at Tel Aviv University and was recently published in the Proceedings of the National Academy of Sciences.

Mar 9, 2024

Novel method improves Fourier transform infrared spectroscopy detection of ultra-low concentration trace substances

Posted by in categories: biotech/medical, engineering, quantum physics

A recent study conducted at Tel Aviv University has devised a large mechanical system that operates under dynamical rules akin to those found in quantum systems. The dynamics of quantum systems, composed of microscopic particles like atoms or electrons, are notoriously difficult, if not impossible, to observe directly.

However, this new system allows researchers to visualize occurring in specialized “topological” materials through the movement of a system of coupled pendula.

The research is a collaboration between Dr. Izhar Neder of the Soreq Nuclear Research Center, Chaviva Sirote-Katz of the Department of Biomedical Engineering, Dr. Meital Geva and Prof. Yair Shokef of the School of Mechanical Engineering, and Prof. Yoav Lahini and Prof. Roni Ilan of the School of Physics and Astronomy at Tel Aviv University and was recently published in the Proceedings of the National Academy of Sciences.

Mar 9, 2024

Electroconvulsive Therapy Really Works For Depression, And Now We Know Why

Posted by in categories: biotech/medical, engineering, neuroscience, quantum physics

A recent study conducted at Tel Aviv University has devised a large mechanical system that operates under dynamical rules akin to those found in quantum systems. The dynamics of quantum systems, composed of microscopic particles like atoms or electrons, are notoriously difficult, if not impossible, to observe directly.

However, this new system allows researchers to visualize occurring in specialized “topological” materials through the movement of a system of coupled pendula.

The research is a collaboration between Dr. Izhar Neder of the Soreq Nuclear Research Center, Chaviva Sirote-Katz of the Department of Biomedical Engineering, Dr. Meital Geva and Prof. Yair Shokef of the School of Mechanical Engineering, and Prof. Yoav Lahini and Prof. Roni Ilan of the School of Physics and Astronomy at Tel Aviv University and was recently published in the Proceedings of the National Academy of Sciences.

Mar 9, 2024

Classifying quantum secrets: Pendulum experiment reveals insights into topological materials

Posted by in categories: biotech/medical, engineering, quantum physics

A recent study conducted at Tel Aviv University has devised a large mechanical system that operates under dynamical rules akin to those found in quantum systems. The dynamics of quantum systems, composed of microscopic particles like atoms or electrons, are notoriously difficult, if not impossible, to observe directly.

However, this new system allows researchers to visualize occurring in specialized “topological” materials through the movement of a system of coupled pendula.

Continue reading “Classifying quantum secrets: Pendulum experiment reveals insights into topological materials” »

Mar 9, 2024

Exploring the surface properties of NiO with low-energy electron diffraction

Posted by in categories: computing, particle physics, quantum physics

Spintronics is a field that deals with electronics that exploit the intrinsic spin of electrons and their associated magnetic moment for applications such as quantum computing and memory storage devices. Owing to its spin and magnetism exhibited in its insulator-metal phase transition, the strongly correlated electron systems of nickel oxide (NiO) have been thoroughly explored for more than eight decades. Interest in its unique antiferromagnetic (AF) and spin properties has seen a revival lately since NiO is a potential material for ultrafast spintronics devices.

Despite this rise in popularity, exploration of its magnetic properties using the low-energy electron diffraction (LEED) technique has not received much attention since the 1970s. To review the understanding of the surface properties, Professor Masamitsu Hoshino and Emeritus Professor Hiroshi Tanaka, both from the Department of Physics at Sophia University, Japan, revisited the surface LEED crystallography of NiO.

The results of their quantitative experimental study investigating the coherent exchange scattering in Ni2+ ions in AF single crystal NiO were reported in The European Physical Journal D.

Mar 9, 2024

D-Wave says its quantum computers can solve otherwise impossible tasks

Posted by in categories: quantum physics, supercomputing

Quantum computing firm D-Wave says its machines are the first to achieve “computational supremacy” by solving a practically useful problem that would otherwise take millions of years on an ordinary supercomputer.

By Matthew Sparkes

Mar 9, 2024

Physicists Reveal a Strange Form of Crystal Where Electrons Can’t Move

Posted by in categories: particle physics, quantum physics

Quantum traffic laws applied to the 3D streetscape of a specific kind of crystal can put the brakes on electron rush hour.

In a search for novel materials that can contain bizarre new states of matter, physicists from Rice University in the US led an experiment that forced free-roaming electrons to stay in place.

While the phenomenon has been seen in materials where electrons are constrained to just two dimensions, this is the first time it’s been observed in a three-dimensional crystal metal lattice, known as a pyrochlore. The technique gives researchers a new tool for studying the less conventional activities of plucky, charge-carrying particles.

Mar 8, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes

Posted by in categories: particle physics, quantum physics

Condensed matter systems and photonic technologies are regularly used by researchers to create microscale platforms that can simulate the complex dynamics of many interacting quantum particles in a more accessible setting. Some examples include ultracold atomic ensembles in optical lattices, superconducting arrays, and photonic crystals and waveguides. In 2006 a new platform emerged with the demonstration of macroscopically coherent quantum fluids of exciton-polaritons to explore many-body quantum phenomena through optical techniques.

When a piece semiconductor is placed between two mirrors—an optical microresonator—the electronic excitations within can become strongly influenced by photons trapped between the mirrors. The resulting new bosonic , known as exciton-polaritons (or polaritons for short), can under the right circumstances undergo a phase transition into a nonequilibrium Bose-Einstein condensate and form a macroscopic quantum fluid or a droplet of light.

Quantum fluids of polaritons have many salient properties, one being that they are optically configurable and readable, permitting easy measurements of the dynamics. This is what makes them so advantageous to simulate many-body physics.

Mar 8, 2024

How one theory ties together everything we know about the universe

Posted by in category: quantum physics

All known natural phenomena fit into just a few categories and unifying them all is quantum field theory, says physicist Matt Strassler.

By Matt Strassler