Menu

Blog

Archive for the ‘quantum physics’ category: Page 278

Jun 16, 2023

After Artificial Intelligence, Quantum Computing Could Be The Next Big Thing

Posted by in categories: cybercrime/malcode, quantum physics, robotics/AI

Much like artificial intelligence, quantum computing has the potential to transform many industries. But a cybersecurity threat looms large.

Jun 16, 2023

A new path for quantum physics to control chemical reactions

Posted by in categories: chemistry, quantum physics

Controlling chemical reactions to generate new products is one of the biggest challenges in chemistry. Developments in this area impact industry, for example, by reducing the waste generated in the manufacture of construction materials or by improving the production of catalysts to accelerate chemical reactions.

For this reason, in the field of polariton chemistry—which uses tools of chemistry and quantum optics—in the last 10 years different laboratories around the world have developed experiments in optical cavities to manipulate the chemical reactivity of molecules at room temperature, using . Some have succeeded in modifying products in , but to date, and without relevant advances in the last two years, no research team has been able to come up with a general physical mechanism to describe the phenomenon and to reproduce it to obtain the same measurements in a consistent manner.

Now a team of researchers from Universidad de Santiago (Chile), part of the Millennium Institute for Research in Optics (MIRO), led by principal investigator Felipe Herrera, and the laboratory of the chemistry division of the US Naval Research Laboratory, (United States), led by researcher Blake Simpkins, for the first time report the manipulation of the formation rate of urethane molecules in a solution contained inside an infrared cavity.

Jun 16, 2023

We Finally Know How Photosynthesis Starts: It Takes Just a Single Photon

Posted by in categories: biological, chemistry, quantum physics

During photosynthesis, a symphony of chemicals transforms light into the energy required for plant, algal, and some bacterial life. Scientists now know that this remarkable reaction requires the smallest possible amount of light – just one single photon – to begin.

A US team of researchers in quantum optics and biology showed that a lone photon can start photosynthesis in the purple bacterium Rhodobacter sphaeroides, and they are confident it works in plants and algae since all photosynthetic organisms share an evolutionary ancestor and similar processes.

The team says their findings bolster our knowledge of photosynthesis and will lead to a better understanding of the intersection of quantum physics in a wide range of complex biological, chemical, and physical systems, including renewable fuels.

Jun 16, 2023

Scientists Found a Way to ‘Tune’ Atomic-Scale Geometry at Will

Posted by in categories: computing, quantum physics

Twistronics could illuminate a path to superconductivity, revolutionize electronic devices, or perhaps hasten the arrival of quantum computing.

Jun 16, 2023

IBM Makes the Best Quantum Computer Open to Public

Posted by in categories: computing, quantum physics

IBM in collaboration with UC Berkeley researchers announced a recent breakthrough experiment which indicates that quantum computers will soon surpass classical computers in practical tasks.

Now, the company is taking another major step that has never been done before by it. The company is making the 127-qubit quantum computer publicly available over IBM Cloud.

Continue reading “IBM Makes the Best Quantum Computer Open to Public” »

Jun 16, 2023

IBM’s Eagle quantum computer just beat a supercomputer at complex math

Posted by in categories: mathematics, quantum physics, supercomputing

The company now plans to power its quantum computers with a minimum of 127 qubits.

IBM’s Eagle quantum computer has outperformed a conventional supercomputer when solving complex mathematical calculations. This is also the first demonstration of a quantum computer providing accurate results at a scale of 100+ qubits, a company press release said.

Continue reading “IBM’s Eagle quantum computer just beat a supercomputer at complex math” »

Jun 15, 2023

Quantum interference of light: Anomalous phenomenon found

Posted by in categories: particle physics, quantum physics

A counterintuitive facet of the physics of photon interference has been uncovered by three researchers of Université libre de Bruxelles, Belgium. In an article published this month in Nature Photonics, they have proposed a thought experiment that utterly contradicts common knowledge on the so-called bunching property of photons. The observation of this anomalous bunching effect seems to be within reach of today’s photonic technologies and, if achieved, would strongly impact on our understanding of multiparticle quantum interferences.

One of the cornerstones of quantum physics is Niels Bohr’s complementarity principle, which, roughly speaking, states that objects may behave either like particles or like waves. These two mutually exclusive descriptions are well illustrated in the iconic , where particles are impinging on a plate containing two slits. If the trajectory of each particle is not watched, one observes wave-like interference fringes when collecting the particles after going through the slits. But if the trajectories are watched, then the fringes disappear and everything happens as if we were dealing with particle-like balls in a .

As coined by physicist Richard Feynman, the interference fringes originate from the absence of “which-path” information, so that the fringes must necessarily vanish as soon as the experiment allows us to learn that each particle has taken one or the other path through the left or right slit.

Jun 15, 2023

For experimental physicists, quantum frustration leads to fundamental discovery

Posted by in categories: particle physics, quantum physics

A team of physicists, including University of Massachusetts assistant professor Tigran Sedrakyan, recently announced in the journal Nature that they have discovered a new phase of matter. Called the “chiral Bose-liquid state,” the discovery opens a new path in the age-old effort to understand the nature of the physical world.

Under everyday conditions, matter can be a solid, liquid or gas. But once you venture beyond the everyday—into temperatures approaching absolute zero, things smaller than a fraction of an atom or which have extremely low states of energy—the world looks very different. “You find quantum states of matter way out on these fringes,” says Sedrakyan, “and they are much wilder than the three classical states we encounter in our everyday lives.”

Sedrakyan has spent years exploring these wild quantum states, and he is particularly interested in the possibility of what physicists call “band degeneracy,” “moat bands” or “kinetic frustration” in strongly interacting quantum matter.

Jun 15, 2023

Nobel winner Anton Zeilinger: ‘Physicists can make measurements, but cannot say anything about the essence of reality’

Posted by in categories: computing, quantum physics

The Austrian scientist, a pioneer of quantum teleportation, reflects on God, the nature of things and the future of computing.

Jun 15, 2023

Intel Enters the Quantum Computing Horse Race With 12-Qubit Chip

Posted by in categories: computing, quantum physics

But before quantum physics revolutionizes computing, Intel and rivals will have to learn how to make vastly more powerful machines.