Menu

Blog

Archive for the ‘quantum physics’ category: Page 596

Feb 4, 2020

Quantum weirdness could allow a person-sized wormhole to last forever

Posted by in categories: cosmology, quantum physics

We were unsure if wormholes could exist long enough to allow a person through. Now calculations indicate they are extremely rare, but could last the age of the universe.

Feb 4, 2020

India bets big on quantum technology

Posted by in categories: biotech/medical, computing, encryption, quantum physics

Overall, India’s science ministry, which oversees the department of science and technology; biotechnology; and scientific and industrial research, received 144 billion rupees in the 2020–21 budget, a 10.8% increase over promised funds in the 2019–20 budget.


Latest budget includes more than a billion dollars in funding for quantum computing, communications and cryptography.

Feb 3, 2020

New quantum switch turns metals into insulators

Posted by in categories: biotech/medical, computing, quantum physics

Most modern electronic devices rely on tiny, finely-tuned electrical currents to process and store information. These currents dictate how fast our computers run, how regularly our pacemakers tick and how securely our money is stored in the bank.

In a study published in Nature Physics, researchers at the University of British Columbia have demonstrated an entirely new way to precisely control such electrical currents by leveraging the interaction between an electron’s spin (which is the quantum it inherently carries) and its orbital rotation around the nucleus.

“We have found a new way to switch the electrical conduction in materials from on to off,” said lead author Berend Zwartsenberg, a Ph.D. student at UBC’s Stewart Blusson Quantum Matter Institute (SBQMI). “Not only does this exciting result extend our understanding of how electrical conduction works, it will help us further explore known properties such as conductivity, magnetism and superconductivity, and discover new ones that could be important for quantum computing, data storage and energy applications.”

Feb 3, 2020

Scientists cooled a nanoparticle to the quantum limit

Posted by in categories: nanotechnology, particle physics, quantum physics

A tiny nanoparticle has been chilled to the max.

Physicists cooled a nanoparticle to the lowest temperature allowed by quantum mechanics. The particle’s motion reached what’s known as the ground state, or lowest possible energy level.

In a typical material, the amount that its atoms jostle around indicates its temperature. But in the case of the nanoparticle, scientists can define an effective temperature based on the motion of the entire nanoparticle, which is made up of about 100 million atoms. That temperature reached twelve-millionths of a kelvin, scientists report January 30 in Science.

Feb 3, 2020

Lego Cryonaut Found a Way to Make Quantum Computing More Affordable

Posted by in categories: computing, quantum physics

Lego is an unusual candidate to make thermal computing cost less.

Feb 2, 2020

Searching for Quantum Gravity

Posted by in category: quantum physics

What is spacetime? How do physicists describe it? How does it relate to quantum gravity? Thomas Hartman passionately pursues these mysteries.

Jan 31, 2020

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

Posted by in categories: computing, education, humor, quantum physics

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The National Science Foundation has done just as part of its EPiQC (Enabling Practical-scale Quantum Computing) program. So far eight €˜Zines €™ have been created with more to come.

€œComic books offer approachable ways to convey both humor and information. One might think that comic books would not be able to convey complex information like the ideas behind QC. In this case, one would be wrong, at least for one as creative as the University of Chicago €™s Diana Franklin, as part of the National Science Foundation (NSF) funded https://www.epiqc.cs.uchicago.edu/”>EPIQC Expedition in Computing, € wrote Mark Hill of the University of Wisconsin-Madison in a recent blog for Computing Community Consortium, run by NSF.

€œIn particular, Diana and colleagues have developed eight, with more coming, €œ https://www.epiqc.cs.uchicago.edu/zines”>zines € that are comic-book-like pamphlets obtained by printing and folding a single sheet of paper. The topics include quantum notation, superposition, and history. In my humble opinion, these are great examples of the synergy possible with research and education done together. Enjoy! €.

Jan 31, 2020

Dutch Scientists Just Shattered Our Conception Of How Information Will Travel In The Future

Posted by in categories: particle physics, quantum physics

Essentially the higgs boson could allow for warp bubble technology to pop out of the space time continuum then basically pop back in.


Using quantum teleportation.

Jan 31, 2020

Levitating sand escapes classical world, enters quantum ground state

Posted by in categories: particle physics, quantum physics

O.o.


We’re close to being uncertain about where hundreds of millions of atoms are.

Jan 31, 2020

Higgs mode and its decay in a two-dimensional antiferromagnet

Posted by in categories: mapping, particle physics, quantum physics

Essentially the higgs mode is like a developer mode for materials and even physics by itself. It could make metals that are as light as a feather but essentially as strong as a universe. It could make essentially near infinitely strong metals that could be put on spaceships to handle all manners of energy blasts. Even weird things could happen where like even changing dimension al physics of areas. Essentially a near cartoon like physics or even prove the existence of the stranger things dimension really happened. Even keep out other dimensions from entering our universe. Even controlling the universe itself by healing it. Essentially like it could allow the monitor from halo kinda developer mode to modify gravity or all variables or even bring new variables into the dimension.


Condensed-matter analogues of the Higgs boson in particle physics allow insights into its behaviour in different symmetries and dimensionalities1. Evidence for the Higgs mode has been reported in a number of different settings, including ultracold atomic gases2, disordered superconductors3, and dimerized quantum magnets4. However, decay processes of the Higgs mode (which are eminently important in particle physics) have not yet been studied in condensed matter due to the lack of a suitable material system coupled to a direct experimental probe. A quantitative understanding of these processes is particularly important for low-dimensional systems, where the Higgs mode decays rapidly and has remained elusive to most experimental probes. Here, we discover and study the Higgs mode in a two-dimensional antiferromagnet using spin-polarized inelastic neutron scattering. Our spin-wave spectra of Ca2RuO4 directly reveal a well-defined, dispersive Higgs mode, which quickly decays into transverse Goldstone modes at the antiferromagnetic ordering wavevector. Through a complete mapping of the transverse modes in the reciprocal space, we uniquely specify the minimal model Hamiltonian and describe the decay process. We thus establish a novel condensed-matter platform for research on the dynamics of the Higgs mode.