Menu

Blog

Archive for the ‘quantum physics’ category: Page 602

Dec 31, 2019

The experimental demonstration of a spin quantum heat engine

Posted by in category: quantum physics

The theoretical notion of a ‘quantum heat engine’ has been around for several decades. It was first introduced around sixty years ago by Scovil and Schulz-DuBois, two physicists at Bell Labs who drew an analogy between three-level masers and thermal machines.

Dec 31, 2019

Physicists Just Achieved The First-Ever Quantum Teleportation Between Computer Chips

Posted by in categories: computing, particle physics, quantum physics

As 2019 winds to a close, the journey towards fully realised quantum computing continues: physicists have been able to demonstrate quantum teleportation between two computer chips for the first time.

Put simply, this breakthrough means that information was passed between the chips not by physical electronic connections, but through quantum entanglement – by linking two particles across a gap using the principles of quantum physics.

We don’t yet understand everything about quantum entanglement (it’s the same phenomenon Albert Einstein famously called “spooky action”), but being able to use it to send information between computer chips is significant, even if so far we’re confined to a tightly controlled lab environment.

Dec 31, 2019

2019 In Science

Posted by in categories: cosmology, quantum physics, science

From the first black hole image to the first image of quantum entanglement, mankind achieved a lot in 2019!

Dec 30, 2019

Chip-to-chip quantum teleportation and multi-photon entanglement in silicon

Posted by in categories: computing, quantum physics

Integrated optics provides a versatile platform for quantum information processing and transceiving with photons1,2,3,4,5,6,7,8. The implementation of quantum protocols requires the capability to generate multiple high-quality single photons and process photons with multiple high-fidelity operators9,10,11. However, previous experimental demonstrations were faced by major challenges in realizing sufficiently high-quality multi-photon sources and multi-qubit operators in a single integrated system4,5,6,7,8, and fully chip-based implementations of multi-qubit quantum tasks remain a significant challenge1,2,3. Here, we report the demonstration of chip-to-chip quantum teleportation and genuine multipartite entanglement, the core functionalities in quantum technologies, on silicon-photonic circuitry. Four single photons with high purity and indistinguishablity are produced in an array of microresonator sources, without requiring any spectral filtering. Up to four qubits are processed in a reprogrammable linear-optic quantum circuit that facilitates Bell projection and fusion operation. The generation, processing, transceiving and measurement of multi-photon multi-qubit states are all achieved in micrometre-scale silicon chips, fabricated by the complementary metal–oxide–semiconductor process. Our work lays the groundwork for large-scale integrated photonic quantum technologies for communications and computations.

Dec 30, 2019

Parallel worlds exist and interact with our world, say physicists

Posted by in category: quantum physics

Theory explains many of the bizarre observations made in quantum mechanics.

Dec 30, 2019

AWS Officially Launched Its Quantum Computing Service

Posted by in categories: computing, quantum physics

It seemed as if AWS was lagging behind Google, Microsoft, and IBM when it comes to quantum computing but they’ve finally taken a step forward with their latest announcement.

AWS has officially announced the preview launch of its first-ever quantum computing service known as Braket. However, AWS is still not building their own quantum computer. Instead, they chose to partner with IonQ, Rigetti, and D-Wave in providing computing services through the cloud.

Dec 29, 2019

Amelie Schreiber

Posted by in categories: business, quantum physics, robotics/AI, singularity

Read writing from Amelie Schreiber in Towards Data Science. CEO & Founder of The Singularity: Quantum Machine Learning Hiring, Business Integration, and R&D Consultant.

Dec 28, 2019

Detecting the Origin of Cancer‐Mobile Quantum Probe for Single Cancer Stem Cell Detection

Posted by in categories: chemistry, quantum physics

Cancer stem cells (CSC) are believed to be the driving force of cancer metastases and are a rare population of self‐renewing cells that contribute majorly to the poor outcomes of cancer therapy. The detection of CSC is of utmost importance to shed light on the indestructible nature of certain solid tumors and their metastatic ability. However, tumors tend to harbor CSCs in a specialized niche, making the detection process difficult. Currently, there is no method available to detect CSCs. The significance of this work is twofold. First, to the best of the knowledge, it is the first time that the detection of CSC is demonstrated. This approach simultaneously detects both the phenotypic and the metabolic state of the cell, thus enabling universal detection of CSC with high accuracy. Second, to the best of the knowledge, for the first time, light is shed on cell chemistry of CSC in their dedicated niche to facilitate a better understanding of the key players involved in the metabolic rewiring of CSC. This work will enable a better understanding of the fundamentals of CSCs, which are critical for the early diagnosis of cancer and the development of therapies for the cure of cancer.

Dec 28, 2019

Researchers Teleport Information Between Two Computer Chips for the First Time

Posted by in categories: computing, internet, nanotechnology, particle physics, quantum physics

For the first time, researchers and scientists from the University of Bristol, in collaboration with the Technical University of Denmark (DTU), have achieved quantum teleportation between two computer chips. The team successfully developed chip-scale devices that are able to harness the applications of quantum physics by generating and manipulating single particles of light within programmable nano-scale circuits.

Unlike regular or science fiction teleportation which transfer particles from one place to another, with quantum teleportation, nothing physical is being transported. Rather, the information necessary to prepare a target system in the same quantum state as the source system is transmitted from one location to another, with the help of classical communication and previously shared quantum entanglement between the sending and receiving location.

In a feat that opens the door for quantum computers and quantum internet, the team managed to send information from one chip to another instantly without them being physically or electronically connected. Their work, published in the journal Nature Physics, contains a range of other quantum demonstrations. This chip-to-chip quantum teleportation was made possible by a phenomenon called quantum entanglement. The entanglement happens between two photons (two light particles) with the interaction taking place for a brief moment and the two photons sharing physical states. Quantum entanglement phenomenon is so strange that physicist Albert Einstein famously described it as ‘spooky action at a distance’.

Dec 27, 2019

Information teleported between two computer chips for the first time

Posted by in categories: computing, internet, particle physics, quantum physics

Scientists at the University of Bristol and the Technical University of Denmark have achieved quantum teleportation between two computer chips for the first time. The team managed to send information from one chip to another instantly without them being physically or electronically connected, in a feat that opens the door for quantum computers and quantum internet.

This kind of teleportation is made possible by a phenomenon called quantum entanglement, where two particles become so entwined with each other that they can “communicate” over long distances. Changing the properties of one particle will cause the other to instantly change too, no matter how much space separates the two of them. In essence, information is being teleported between them.

Hypothetically, there’s no limit to the distance over which quantum teleportation can operate – and that raises some strange implications that puzzled even Einstein himself. Our current understanding of physics says that nothing can travel faster than the speed of light, and yet, with quantum teleportation, information appears to break that speed limit. Einstein dubbed it “spooky action at a distance.”